
Same-Origin Policy: Evaluation in Modern Browsers

Jörg Schwenk, Marcus Niemietz, and Christian Mainka
Horst Görtz Institute for IT Security, Chair for Network and Data Security

Ruhr-University Bochum

Abstract
The term Same-Origin Policy (SOP) is used to denote a
complex set of rules which governs the interaction of dif-
ferent Web Origins within a web application. A subset of
these SOP rules controls the interaction between the host
document and an embedded document, and this subset
is the target of our research (SOP-DOM). In contrast to
other important concepts like Web Origins (RFC 6454)
or the Document Object Model (DOM), there is no for-
mal specification of the SOP-DOM.

In an empirical study, we ran 544 different test cases
on each of the 10 major web browsers. We show that in
addition to Web Origins, access rights granted by SOP-
DOM depend on at least three attributes: the type of the
embedding element (EE), the sandbox, and CORS at-
tributes. We also show that due to the lack of a formal
specification, different browser behaviors could be de-
tected in approximately 23% of our test cases. The is-
sues discovered in Internet Explorer and Edge are also
acknowledged by Microsoft (MSRC Case 32703). We
discuss our findings in terms of read, write, and execute
rights in different access control models.

1 Introduction

The Same-Origin Policy (SOP) is perhaps the most im-
portant security mechanism for protecting web applica-
tions, and receives high attention from developers and
browser vendors.

Complex Set of SOP Rules. Today there is no for-
mal definition of the SOP itself. Web Origins as de-
scribed in RFC 6454 are the basis for the SOP, but they
do not formally define the SOP. Documentation pro-
vided by standardization bodies [1] or browser vendors
[2] is still incomplete. Our evaluation of related work
has shown that the SOP does not have a consistent de-
scription – both in the academic and non-academic world

(e.g., [15, 16, 5]). Therefore, recurrent browser bugs en-
abling SOP bypasses are not surprising.

SOP rules can roughly be classified according to the
problem areas which they were designed to solve (cf. Ta-
ble 1). It is impossible to cover all these subsets in a sin-
gle research paper and even may be impossible to find a
“unifying formula” which covers all subsets.1 However,
it is possible to cover single subsets, as previous work on
HTTP cookies has shown [12]. Thus, we restricted our
attention to the following research questions:

I How is SOP for DOM access (SOP-DOM) imple-
mented in modern browsers?

I Which parts of the HTML markup influences SOP-
DOM?

I How does the detected behavior match known ac-
cess control policies?

More precisely, we concentrate on a subset of SOP
rules according to the following criteria:

I Web Origins. We use RFC 6454 as a foundation.

I Browser Interactions. We concentrate on the inter-
action of web objects once they have been loaded.

It is a difficult task to select a test set for SOP-DOM that
has constantly evolved over nearly two decades. The
SOP-DOM has been adapted several times to include
new features (e.g., CORS) and to prevent new attacks.
15 out of 142 HTML elements have a URL attribute and
may thus have a different Web Origin [17]. Additionally,
sandbox and CORS attributes also modify SOP-DOM.

The Need for Testing. Amongst web security re-
searchers, SOP-DOM is partially common knowledge,
but not thoroughly documented. Although this means

1For example, the SOP rules for DOM access and HTTP cookies
are inconsistent, because their concept of “origin” differs.

SOP Subset Description Related Work
DOM access
(this paper)

This subset describes if JavaScript code loaded into one “execution context” may access
web objects in another “execution context”. This includes modifications of the standard
behavior by changing the Web Origin, for example, using document.domain.

[1], [2], [3],
[4], [5] , [6]

Local storage
and session
storage

This subset defines which locally stored web object ([name,value] pairs) may be accessed
from a JavaScript execution context.

[7], [8]

XMLHttpRequest This subset imposes restrictions on cross-origin HTTP network access. It contains many
ad-hoc rules and its main concepts have been standardized in CORS.

[9], [7], [8],
[10]

Pseudo-
protocols

Browsers may use Pseudo-protocols like about:, javascript: and data: to de-
note locally generated content. A complex set of rules applies for the definition of Web
Origins here.

[8], [10]

Plugins Many plugins like Java, Flash, Silverlight, PDF come with their own variants of a SOP. [11], [8]
Window/Tab Cross-window communication functions and properties: window.opener, open()

and showModalDialogue().
[8], [10]

HTTP Cookies This subset, with an extension of the Web Origin concept (path), defines to which URLs
HTTP cookies will be sent. This defines their accessibility in the DOM for non-httpOnly
cookies.

[12], [13], [14]

Table 1: Different subsets of SOP rules.

that most researches are familiar with many edge cases in
SOP-DOM, especially those relating to attacks and coun-
termeasures, it is likely that some of those edge cases will
not be covered in this paper. Additionally, each individ-
ual researcher will be unaware of other edge cases, which
may include novel vulnerabilities. For example, it is well
known that JavaScript code from a different web origin
has full read and write access to the host document; nev-
ertheless, recently Lekies et al. [5] pointed our that there
is also read access from the host document to JavaScript
code, which may constitute a privacy problem.

Additionally, HTML5 has brought greater diversity to
seemingly well-known HTML elements. For instance,
the term “authority” used in RFC 6454 [18] may not be
sufficient any more if we compare the power of SVG im-
ages [19] with the following quote from RFC 6454: “an
image is passive content and, therefore, carries no au-
thority, meaning the image has no access to the objects
and resources available to its origin”. Our evaluation
shows that this statement is true for all image types if
they are embedded via . This statement does not
hold if SVG images are embedded via <iframe> or <
object>. Novel standards like Cross-Origin Resource
Sharing (CORS, [9]) also influence access rights granted
by the SOP. To be able to keep the implementation of
the SOP consistent through all these extensions, a formal
model is needed.

Our Approach. The aim of this paper is to develop
a comprehensive testing framework for SOP-DOM (see
Figure 1). The SOP restricts access of active content like
JavaScript on other components of a web page. We also
apply it to CSS code by interpreting the style changes

Embedding	
Element	(EE)

Embedded	
Document	(ED)

SOP
read?

write?

read?

write?

Host	Document (HD)

Web	
Object

Subject:	
JavaScriptallow	script	execution?

Web	Origin	ED

{ee,sandbox,cors}

Web	Origin	HD

Subject:	
JavaScript

Web	
Object

Figure 1: Setup for our test cases for SOP DOM access.
The embedding element (EE) itself belongs to the host
document (HD).

imposed by CSS code as write access on certain DOM
elements.

We define “comprehensive” by meaning the coverage
of all interesting edge cases. We thus do not cover all 15
elements with URI attributes but only a selected subset
according to importance and interesting properties. In-
stead, we include “URL-attribute-like” constructions in
the <canvas> element. We also do not restrict the test
set to full DOM read or write access (which easily could
have been automated to cover more test cases) but in-
stead, also concentrate on the more interesting cases of
partial read and write access.

Our tests thus cover only a representative sample of
SOP-DOM, but this sample was chosen to cover each

known edge case of SOP-DOM. To cover these edge
cases, many of the 544 test cases were designed man-
ually. We use these representative test results to dis-
cuss if classical access control models like DAC, RBAC
and ABAC are applicable to SOP-DOM. We reformulate
access restrictions in terms of read, write, and execute
rights granted to an embedded document (ED) contained
in the HD and vice versa. We thus highlight the impor-
tance of the EE in defining the access rules of the SOP.

Testbed. We show the applicability of our test method-
ology for SOP implementations in current web browsers
by providing a testbed at www.your-sop.com, where
proof-of-concept HTML, JavaScript, and CSS code is
given for each test case. Our tool consists of more than
10,000 lines of code covering 544 test cases with five
types of ED and ten types of EE. The tests are created
in a semi-automatic manner. For each EE to be tested,
we automatically load the ED with possible CORS/sand-
box attributes successively. We did not choose a fully-
automatic test creation because this would lead to an
overwhelming number of errors. Combining each EE
with all possible attributes would lead to errors; for
example, neither nor <object
src="..."> are semantically correct. In addition,

there is no universal access from HD to ED and vice versa;
for example, accessing the SVG ED can be achieved with
a dedicated getSVGDocument() method.

Limitations. We describe a subset of the SOP for
the interaction of web objects that are loaded into the
browser. Zalweski describes other contexts such as
cookie, local storage, Flash, XMLHttpRequest, Java, Sil-
verlight, and Gears [8]. For each of them a different SOP
is used. For example, Zheng et al. [12] have analyzed
the SOP for HTTP cookies in-depth; here the SOP takes
the path contained in an URI into account, which is an
extension of the Web Origin concept. An in-depth dis-
cussion of the limitations of our approach can be found
in Section 5.

Contributions. We make the following contributions:

I We systematically test edge cases of the SOP that
have not been previously documented like the influ-
ence of the embedding element, and the CORS and
sandbox attributes.

I We provide a testbed where the SOP implementa-
tion of a browser can be automatically tested and
visualized.

I We used this testbed to extensively evaluate our
model in 544 test cases on 10 modern browsers.

More than 23% of the test cases revealed differ-
ent SOP-DOM access rights implemented in at least
one of the tested browsers. Our ABAC model pro-
vides a systematic way to describe these differ-
ences.

I We prove that a better understanding of SOP-DOM
is useful by describing a novel CSS-based login or-
acle attack for IE and Edge, which we found using
the ABAC rules for cross-origin access to CSS.

I We critically discuss the applicability of standard
access control models like DAC, RBAC, and ABAC
to SOP-DOM.

2 Foundations

Document Object Model (DOM). DOM is the stan-
dardized application programming interface (API) for
scripts running in a browser to interact with the HTML
document. It defines the “environment” in which a script
operates. The first standard (DOM Level 1) was pub-
lished in 1998 and the latest published version is DOM
Level 3 (2004). The DOM standard is now a “living stan-
dard” since it has to be adapted to each new HTML5 fea-
ture, resulting the DOM Level 4 to remain in the “work
in progress” stage.2

A browser’s DOM includes more objects and proper-
ties than just the pure HTML markup, as shown in Fig-
ure 2. These objects can be accessed through a variety
of different methods. For example, the iFrame element
can be accessed through predefined selector methods
like document.getElementByID("ID1"). The
DOM structure does not necessarily match the markup
structure. Although the <iframe> element from Fig-
ure 2 is a child element of the HTML document, there is
no property document.frames[0]; instead, there is
only window.frames[0].

window

document
<html>	

e.g.,	
 main	
 HTML	
 document	
 e.g.,	
 iFrame	

head
<head>	

body
<body>	

<img	
 src="URL3"	
 name="bear">	

<iframe	
 src="URL2"	

id="ID1">	

document
<html>	

doctype
XHTML	

head
<head>	

<script	
 src="URL1">	

window.
frames[0]

doctype
HTML	
 5	

body
<body>	

<link	
 src="URL4">	

img.src=URL3	

id=ID1

Figure 2: Small extract from the DOM.

2https://dom.spec.whatwg.org/

www.your-sop.com
https://dom.spec.whatwg.org/

To access and modify the DOM, JavaScript code can
be used. Each JavaScript script runs in a specific DOM
execution context. Consider Listing 1 as an example.
If this small HTML file is opened in a web browser,
first the <iframe> element will be parsed. After that
the iFrame’s source code from Listing 2 will be loaded
and the alert function contained therein will be exe-
cuted. The <script> element will then be parsed and
the (second) alert function will be executed.

1 <html><head><title>a.html</title></head>
2 <body><iframe src="b.html" />
3 <script>alert(document.location)</script>
4 </body></html>

Listing 1: Code of http://a.org/a.html

The two alert pop-up windows, triggered by
the two script elements, will display different
URLs because they are acting in different DOMs.
The alert window called in Listing 1 will display
the URL http://a.org/a.html, whereas the
alert window in Listing 2 will display the URL
http://a.org/b.html.

1 <html><head><title>b.html</title></head>
2 <body><script>alert(document.location)</

script>
3 </body></html>

Listing 2: Code of http://a.org/b.html

Cross-Origin Resource Sharing (CORS). Using
XMLHttpRequest, a web page may send arbitrary HTTP
requests to any webserver. This is different from just
opening an URL or submitting an HTML form since with
XMLHttpRequest the web page has full control over all
HTTP headers. To restrict such potentially dangerous
queries, XMLHttpRequest is restricted by default to the
domain from which the calling document was loaded
(same-domain). To enable controlled cross-domain
requests, the CORS standard [9] was developed. It
works as follows: a) in a preflight request,3 the browser
sends an origin header (Origin: http://a.com)
to the target web service requesting CORS privileges.
b) the target server may now answer with an error
message (access denied) or with a CORS header,
such as Access-Control-Allow-Origin:
http://a.com, to grant the access. Instead of a
domain name, the CORS header may contain a wildcard
(*) to grants access from arbitrary domains.4 Although
CORS is designed to relax the Same-Origin Policy
(SOP) in a secure manner, there are many cross-origin
resources used in the web (e.g., scripts, stylesheets,

3The preflight request can be skipped in simple cases
4This additionally denies the use credentials such as cookies in a

CORS request.

images, iFrames) that can be loaded without CORS
and without XMLHttpRequest. However, in HTML5
some elements (e.g.,) may have crossorigin
attributes which invoke CORS and subsequently modify
the SOP access controls.

3 Methodology

3.1 SOP-DOM Attributes

The Same-Origin Policy for DOM Access (SOP-DOM)
controls the access of a subject – typically JavaScript
code – to a web object (e.g., an HTML form). The sub-
ject may be located directly in the HD or in an ED. The
element that loads the ED is called the EE (cf. Figure 1).
Both HD and ED have a Web Origin. The Web Origin
of ED is defined by src or similar attributes of EE (e.g,
dynsrc, lowsrc, and srcset).

SOP-DOM is often described as a boolean switch
which either allows interaction between HD and ED in
the same-origin case or blocks access in case of different
web origins (e.g., Karlof et al. [15]). In reality, SOP-
DOM is more complex; some EEs like block
almost all access even in the same-origin case, some
EEs like <script> allow full read and write access
(in one direction) even in the case of different origins,
and some EEs like <iframe> (in the cross-origin case)
only grant partial access. Furthermore, access decisions
may be influenced by additional attributes like CORS or
sandbox.

In our investigations, we have used five values as our
test attributes, two of which contribute to the definition
of Web Origin. These attributes are summarized in Ta-
ble 2.

Notation. In this paper and in our testbed, we use HD
and ED to denote that HD and ED share the same Web
Origin, and HD and ED if the origin differs. If cross-
origin and same-origin behavior are identical we, use HD
and ED to save space.

Coverage and Restrictions. The SOP-DOM is very
complex, because with each newly considered attribute,
the number of test cases may grow by a factor propor-
tional to the number of possible attribute values. Thus,
it should be clear that it is nearly impossible to test and
describe the whole SOP-DOM in one research paper.

Since Web Origins are well understood and have
been covered in numerous other publications, we have
only covered two different origins with the same
protocol (HTTP) and two different domains with dif-
ferent domain values. Our focus is on ee, where
we considered HTML elements with URI attributes and

Attribute Description S/O/E HD/ED

protocol protocol of URL,
value of
location.
protocol

S,O HD+ED

domain domain/hostname of
URL, value of
location.
hostname

S,O HD+ED

ee type of EE S,O ED
cors value of the CORS at-

tribute of the ee, i.e.,
ee.crossOrigin

O ED

sandbox value of sandbox S,O,E ED

Table 2: SOP-DOM Attributes. S denotes subject at-
tributes, O object attributes, and E denotes attributes
which may also be set independent of the markup (e.g.,
through a HTTP security policy like Content Security
Policy (CSP)).

properties. By systematically analyzing the provided
list of the W3C [20] and the WHATWG [21], we
picked the representative HTML elements <script>,
, <canvas>, <link>, <iframe>, <object
>, <embed>, and <link>. We have also examined
CORS (the value of the crossorigin attribute) and
sandbox, as a proof-of-concept, to show that these at-
tributes do have an influence on the SOP-DOM. More
limitations of our approach are discussed in Section 5.

3.2 Access Control Test Cases

Web Object Structure. Web objects may have an in-
ternal DOM structure, as it is the case with iFrames or
SVG images. In this case, we can use standard DOM
selector methods to test for read and write access.

Other web objects do not have a DOM structure (e.g.,
JPEG and PNG images). In this case, we define the type
of access for each such web object separately (e.g., single
pixel access for JPEG) and use adapted code examples.

Distinguishing Full and Partial Access. In case that
the object has an internal DOM structure, we define
full access if we can access arbitrary parts of the DOM
by standard selectors like getElementbyID(). We
define partial access as only being able to read, or
only being able to write some specific properties (e.g.,
window.top.location).

If the web object does not have an internal DOM, we
always specify exactly what we can read or write. To
name one example, single pixels in images or the source
code of scripts.

Full Read and Full Write Access. Supposing that
JavaScript code has DOM read access, it typically
also has write access using some DOM methods (e.g.,
innerHTML). We have tested this by first writing into a
particular DOM property, and then by reading the same
property to verify whether it contains the newly written
value. For full DOM access, we successfully verified that
any DOM property which can be read, can also be writ-
ten. In our proof-of-concept implementation, a script
contained in the ED tries to read DOM properties from
HD and vice versa. To test full DOM access, we inter
alia use the code depicted in Listings 3 and 4.

1 <html>
2 <head>HD from HD.org</head>
3 <body>
4 <script>
5 ED=document.getElementById("EE").

contentDocument;
6 HD2ED=ED.getElementById("ID2");
7 read_success = (HD2ED.textContent == "

Text in ED");
8 </script>
9 <element id="ID1">Text in HD</element>

10 <EE id="EE" src="ED.org/ED.mime"></EE>
11 </body>
12 </html>

Listing 3: Host document (HD) verifying full read
access.

1 <html>
2 <head>ED from ED.org</head>
3 <body>
4 <ED><element id="ID2">Text in ED</element

></ED>
5 <script>
6 var ED2HD;
7 ED2HD=parent.getElementById("ID1");
8 read_success = (ED2HD.textContent == "

Text in HD");
9 </script>

10 </body>
11 </html>

Listing 4: Embedded Document (ED) for verifying full
read access.

Partial Access. Many partial access rules have been
added to browser implementations over the years in order
to implement new features, or to defend against new at-
tacks. The best-known examples are certainly the DOM
properties of an iFrame’s top frame that are used to build
JavaScript framebusters to defend against UI Redress-
ing [22].

Partial access cannot be tested systematically. Instead,
we relied on our knowledge from pentesting, blog posts

of security researchers, and – in some cases – on intu-
ition. Please note that our goal was not to give a full list
of partial access rules, but only to document the variety
of such rules.

Partial Read: Examples. An example for partial
read (and write) access is the pixel-based manipula-
tion of images with the help of CANVAS (e.g., via
context.getImageData).

Lekies et al. [5] underlined that every script executed
within the same web document is able to read global vari-
ables created by another script. However, local variables
inside a function cannot be accessed unless their values
are not explicitly returned by the function. This illus-
trates clearly that we have partial read access.

As an edge case example for partial read access, CSS
in combination with browser features like plain HTML
and inactive SVG files can be used to extract some values
from the SOP-DOM [23].

Partial Write: Examples. Partially writable are prop-
erties like parent.location.path and parent.
location.hash. In the past location.hash was
used to share data cross-origin. Nowadays, this feature
can be replaced by using PostMessage or CORS and
write access to parent.location can be restricted
in iFrames by using the sandbox attribute.

Execute. Current sandboxing concepts consider block-
ing JavaScript execution but not CSS execution. To be
consistent with this view, we say that an EE grants ex-
ecute rights to an ED when JavaScript code contained
in the ED can be executed. For example, when EE=<
iframe sandbox>, then the execution of JavaScript
is blocked. We verified this by using script execution to
send a PostMessageAPI message to HD.

4 Evaluation

We implemented a testbed as a web application which
automatically evaluates the SOP implementation of the
currently used browsers. Additionally, it displays the re-
sults of 10 tested browsers from six different vendors and
highlights the differences between them. Our testbed is
publicly available at www.your-sop.com.

4.1 Experiment Setup
We evaluated the following elements with src attributes
and determined their Alexa 500 rank through an analysis
of the Alexa Top–500 start pages. The results are (rank;
domains; occurrences): <script> (3; 460; 12,625), <
link> (8; 453; 5,197), (11; 439; 24,015), and

<iframe> (21; 261; 1,406). To name an example, the
script-element was the third most common element
listed on 453 out of 500 domains with a total of 12,625
findings. The elements <object> or <embed> are not
listed under the TOP-30 elements.

Our testbed executes all tests on a single website so
that tests can be easily repeated with different browsers.
It uses one of the previously mentioned EEs and loads
an external ED via its dedicated attributes. For ex-
ample, the elements uses the src attribute;
however, the <object> elements uses the data at-
tribute. If the element supports CORS, we created a
test as follows; we used the three attribute cases, (1.) no
crossorigin attribute is set, (2.) crossorigin
="use-credentials", and (3.) crossorigin=
"anonymous". For each attribute, we created a
test that receives an HTTP response header Access
-Control-Cross-Origin (1.) set to a specific
domain your-sop.com or other-domain.org,
(2.) set to the wildcard *, (3.) or not set at all. In ad-
dition, the HTTP response header Use-Credentials
is once set for each test to (1.) to yes, to (2.) no, (3.) and
not set. The immense number of combinations lead to a
significant number of test cases if CORS is supported.

Each test loads an external resource (ED), first from
the same domain (your-sop.com), and then from a
different one (other-domain.org). When retrieved
through any browser, the SOP decisions of the currently
used browser are presented in different overview tables.
Since the exact method to access specific objects from
ED to HD – and vice versa – differs with each test, its
source code can be inspected by hovering on the result
field in the table on the testbed website (cf. Figure 3).

Figure 3: Screenshot of our your-sop.com testbed.

Using the testbed, we evaluated the SOP of ten differ-

www.your-sop.com
your-sop.com
other-domain.org
your-sop.com
other-domain.org
your-sop.com

ent browsers, including Google Chrome, Mozilla Fire-
fox, Internet Explorer, Edge and Safari. We added a fea-
ture to export all test results in a JSON file. We then
used this feature to add a comparison table of different
browser behaviors. It displays all test cases and SOP de-
cisions of all browsers at once or can only highlight the
differences. Figure 4 shows a small part of the compari-
son of different SOP implementations.

4.2 Results
In the following, we describe the general outcome of our
testbed. The results are structured by the type of the em-
bedding element (EE).

Images. An element acts like a sandboxed
iFrame; read and write access is blocked in both direc-
tions, even in the same-origin case. Script execution is
blocked in the ED; even if the ED is an SVG containing
some JavaScript code, the script is not executed. This
behavior holds for both the same-origin and cross-origin
case.

If we use <canvas> as the embedding element EE5,
we can get read access to pixels in JPG, PNG and SVG
images if loaded from the same origin. This allows
reading out the color of each pixel and it may be crit-
ical in some security contexts like JPG- or PNG-based
CAPTCHAs. Here, an attacker could use CANVAS to
automatically read out the displayed token.6

SVG files are basically XML-based vector graphics.
Please note, that unlike , the <svg> element does
not support a src attribute to load an external SVG file.
If embedded into a website with or <canvas>,
they behave as if they were bitmaps; thus, we can only
read pixels. It is also possible to include SVGs in EEs
like <iframe>, <object>, and <embed>. Then the
DOM of the SVG is mounted into the HD and we can
access it fully, and additionally read all SVG vector in-
structions.

Scripts. Cross-origin loaded JavaScript code via <
script src="..."> is a well-known special case in
the SOP; it is treated as if it had been loaded from the
same origin. Technically, a script loaded by the src at-
tribute is appended to the document.scripts array
in the HD’s DOM, independent of the domain on which
the script is hosted. In the <script> case, no access
restrictions are imposed by the SOP: we have full read-
/write access from the ED to the HD, and execution rights
from HD to ED.

5See the example on https://developer.mozilla.org/
en-US/docs/Web/API/Canvas_API/Tutorial/Pixel_
manipulation_with_canvas

6http://ejohn.org/blog/ocr-and-neural-nets-in-javascript/

For the read/write access from the HD (subject) to the
ED (JavaScript, object), this is less well-known. It is
clear that we cannot change the content of the external
file (write), but we can overwrite functions defined in
this external file, and thus change the functionality of the
loaded code. We are able to read variable values and the
source code of defined functions7. However, there are
some exceptions: we cannot read var cnt = 2+5;
but we can read the cnt’s value 7. We can also read
the complete line of code if it is contained in a function
(cf. [5]). Thus, we have partial read/write access from
the HD to the ED.

Style Sheets. External CSS code can be loaded via the
embedding element <link>. In the case where the CSS
code is loaded from the same origin, we can read the
complete source code. If the CSS file is loaded cross-
origin, we can only read the source code if proper CORS
values are set. An exception is MS IE/Edge, which al-
lows read access in every case (see Section 4.3 for de-
tails).

Write access for CSS code is defined by the ability of
CSS to change the visual display of a web object. Since
this is the desired behavior, write access from the ED to
the HD is independent of the web origin.

Frames. For <iframe> (without sandox attribute)
we have full read/write access in both directions in the
same-origin case, and partial read/write access in the
cross-origin case.

The cross-origin case from ED (subject) to HD (ob-
ject) is of special interest; we have partial read/write
access. Some properties that can be read are: top
.length (number of frames/iFrames in HD), top.
closed (boolean value if HD is closed), top.opener
(reference to opener HD in the event of a popup). Al-
though this is a very limited read access, we have a side-
channel allowing us to read some cross-origin informa-
tion. Especially the first property is noteworthy; it allows
to get the number of frames/iFrames that are contained in
the HD. We also have partial write access in this case; for
example, to the top.location property (a property
that we can only write, but are unable to read).

Similar results hold for the other direction (subject HD
to object ED) in the cross origin case. In this case, the
properties are accessed via the window.frames[] ar-
ray (instead of top).

Sandboxed Frames. The origins of the SOP-DOM lie
in the necessity of a clear separation of two HTML doc-
uments, shown by several attacks over the last ten years

7For example, by using Object.getOwnPropertyNames(
window), we can read all properties defined in the window object

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Pixel_manipulation_with_canvas
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Pixel_manipulation_with_canvas
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Pixel_manipulation_with_canvas

Figure 4: Evaluation result by comparing 10 different browsers.

[24, 25, 26]. However, a complete separation between
two HTML documents is often not possible; for example,
to allow UI redressing countermeasures with JavaScript
frame-busters [22].

To allow a better separation between the iFrame ED
and the HD, sandboxed iframes were introduced [27].
We limited our evaluation to the attribute values
that directly affect our read, write, and execute re-
sults: allow-scripts, allow-same-origin,
allow-top-navigation.

The sandbox attribute is a special case that is dis-
cussed in Section 7.

Recommendations for Browser Vendors. From the
perspective of a browser vendor, it is interesting to know
how the results of our tool can be used to identify bugs
and therefore potential vulnerabilities. In our analysis,
we have automatically compared each SOP-DOM differ-
ence with the behavior of all other browsers. In case that
at least one browser grants SOP-DOM access that the
other browsers restrict, a browser vendor should have a
closer look on this test case. We recommend to adjust
the SOP-DOM behavior to the majority of other browser
behaviors for reasons of clarity. For each test, our web-
site recommends a result, which is based on the major-
ity of all ten tested browsers (see Figure 4). Because
our testbed includes browsers of different vendors (e.g.,
Apple, Google, Mozilla, Microsoft), we believe that this
might be a representative SOP-DOM result.

4.3 Different Browser Behaviors
We implemented 544 test cases and 129 of these cases
differ across ten tested browsers (23.71%).8 We identi-
fied three subsets of different browser behaviors.

First, more than 35% of the identified differences
could be attributed to <canvas> and PNG/SVG. In
contrast to the other seven browser tests that allow par-
tial read access with the help CORS from HD to ED

8http://www.your-sop.com/stats.php

cross-origin, FF, IE, and Edge do not allow read ac-
cess in the following CORS cases of <canvas> with
SVG and PNG: Access-Control-Allow-Origin
: your-sop.com (ED sets the domain of HD) and
Use-Credentials: true. Irrespective of CORS,
<canvas> and SVG have 44 differences that are based
on a denied access in IE 11.9

Second, over 12% of the test cases show differences
between Safari 9 and the other browsers by looking on <
object> and <embed> elements that load SVG files.
Safari 9 does not show an SVG if it is loaded by code
like <object data="image.svg"></object>.
Therefore, JavaScript code contained in the SVG file
cannot be executed. It needs an additional type attribute
with the value image/svg+xml such that JavaScript
execution is allowed. Since Safari 10.1 Apple has
changed their implementation and both elements behave
similar to the other browsers. The attribute type="
image/svg+xml" is no more required.

Third, over 51% of the test cases show different behav-
iors because of <link>. Nearly all the cases have dif-
ferent CORS implementations. CORS thus shows that a
relatively new and complex technology leads to different
interpretations of “well-known” web concepts like SOP.

Similarly to Chromium’s testbed that have been ap-
plied to other browsers to find bugs, our testbed could
be used and extended by browser vendors and security
researchers to identify browser differences leading to ex-
ploits.10

4.4 Cross-Origin Login Oracle Attack.

We have detected one browser difference due to IE/Edge,
which does not need CORS. In this case, IE/Edge allows
us to read CSS rules cross-origin while other browsers
do not allow such access.

9We have communicated these differences to Microsoft and it seems
that they have fixed them in the newest browser versions.

10https://github.com/thomaspatzke/
BrowserCrasher

http://www.your-sop.com/stats.php
https://github.com/thomaspatzke/BrowserCrasher
https://github.com/thomaspatzke/BrowserCrasher

By using the difference that was detected in case of
<link>, we show that dynamically generated CSS files
can be abused to attack the user’s privacy. In case of CSS
code from different origins, IE/Edge behaves differently
from GC and FF; it does not set DOM properties like
cssRules to null. Therefore, an attacker is always
allowed to read the CSS code regardless of its origin.
This allows us to build a novel login oracle:

I Suppose a webserver delivers different CSS files,
depending on whether the user is logged in or not.

I The attacker’s website consists of the EE <link>
loading the victim’s CSS code (ED).

I Though HD has another origin than ED, the at-
tacker’s JavaScript code in HD automatically reads
all CSS rules. By comparing the CSS code with
CSS code of a logged out user, the attacker can de-
termine the logged in state.

We verified our login oracle with the startpage service
start.me (ED); an attacker is clearly able to decide
whether a user is logged in or not. This attack is sim-
ilar to [5]. We have informed the website administra-
tors about this vulnerability. Microsoft (Research Center,
MSRC) acknowledged this bug (Case 32703) and the fix
will be incorporated into a future version of IE/Edge.

5 Limitations

Even if we restrict our attention to SOP-DOM, the Same-
Origin Policy has a very large scope. We have 15 HTML
elements with src attributes, and several more with a
similar functionality (e.g. <canvas>). There are six
different sandbox attributes, and they (e.g., the CORS at-
tribute) may be influenced by HTTP-based security poli-
cies like CSP. There are many different ways how to em-
bed a document of a given MIME type into a webpage
(e.g., SVG via or <iframe>), and there are
many different MIME types with and without a DOM
structure to consider. There are pseudoprotocols like
data: and about:, which have different Web Origin
definitions. There is also a large number of DOM prop-
erties which could be tested for partial access.

Covering all interactions within this scope would re-
sult in an exponential number of test cases, which can-
not be covered in one research paper. For example, Zal-
weski [28] lists four classes of common URL schemes
(e.g., document-fetching and third-party) consisting of
different subclasses (e.g., browser specific schemes like
vbscript, firefoxurl, and cf). Moreover, it is
possible to register self-defined handlers for particular
schemes via registerProtocolHandler. In this
section, we therefore discuss several technologies that

we excluded from our research and give a rationale for
these decisions.

Link. One technical limitation of our evaluation frame-
work is that we used the <link> element only to
load CSS. We did not consider, for example, HTML
imports via <link rel="import"href="data.
html">. An interesting novel technology that is
highly under development are Service Workers [29].
They can, for example, be loaded using <link rel=
"serviceworker"href="worker.js">. How-
ever, it is currently “an experimental technology” ac-
cording to Mozilla [30], although they are used by many
websites (e.g., Google and Twitter). Our evaluation does
not cover Web Workers [31]. This technology allows
running a JavaScript in different context; for example,
there is no window object reference. For this reason,
we excluded it.

SVG. We only covered <svg> as an EDwhich directly
embeds the JavaScript code for testing read/write access.
It is also possible, to use <svg> as a HD; for example,
an external JavaScript can be loaded by using <svg><
script xlink:href=".."></svg>. Our testbed
always uses an HTML document as HD.

JavaScript. We only cover a small, but hopefully rep-
resentative, set of DOM properties. Our testbed only
covers the location property, but sub-properties such
as location.hash or location.path were not
analyzed. The same holds for the window.name prop-
erty, which is well-known to be writable across origins.

A design decision for our testbed was to be able to
easily execute all test simultaneously. Therefore, only
one index.html is capable to run all 544 tests with only
one click by the user. For this reason, we excluded pop-
ups and the corresponding window.opener property.

Other Mime Types. Our testbed is limited to HTML,
JavaScript, CSS, and SVG. For example, it would be
interesting to investigate PDF, which can also include
JavaScript code. There are many more active MIME
types, such as Flash or ActiveX, which should be ad-
dressed in further research.

Pseudoprotocols. We excluded pseudo protocols (e.g.,
about:, chrome:) and Data and JavaScript-URIs
from our tests, because in a (possibly outdated) overview,
Zalewski [28] already pointed out that there are different
Web Origin assignments in different browser implemen-
tations. However, extending the testbed to selected pseu-
doprotocols is future work.

start.me

6 Related Work

Different SOP Contexts. Jackson and Barth [32] dis-
cussed different SOP contexts, and showed vulnerabil-
ities introduced by the interaction of these contexts.
Zheng et al. [12] describe in detail the SOP for HTTP
cookies. They also presented bypasses based on sub-
domains. Session integrity problems resulting from the
cookie context SOP are discussed by Bortz et al. [13].
Karlof et al. [15] and Masone et al. [14] describe refined
origins for the cookie SOP: they replaced the domain
name with a server’s X.509 certificate and public keys.
Thus, they are able to use different cookies for different
servers on the same domain. Singh et al. [7] analyzed
in-coherencies in web browser access control policies by
showing that there are different definitions of Web Ori-
gins; there are web-origins for DOM objects, localStor-
age, and XMLHttpRequest, as well as other definitions
for cookies (domain, path) and the clipboard (user).

SOP Enhancements. Wang et al. [33] proposed their
secure browser Gazelle with a multi-principal OS ar-
chitecture and showed how to implement extended ac-
cess control policies. Chen et al. [34] analyzed browser
domain-isolation bugs and attacks. They proposed
“script accenting” as a defense mechanism so that frames
cannot communicate if they have different accents.

SOP Bypasses. Ways to bypass SOP restrictions are
regularly published in the academic and non-academic
areas. Jackson et al. [35] and Johns et al. [36] dis-
cuss DNS rebinding attacks (which manipulate Web Ori-
gins and thus disable the SOP) and proposed mitiga-
tion techniques. Oren and Keromytis [16] used Hybrid
Broadcast-Broadband Televisio (HbbTV) to bypass the
SOP. In contrast to websites, HbbTV data does not have
a origin. This characteristic allows an attacker to inject
malicious code of his choice into any website, which are
loaded via the HbbTV data stream. Lekies et al. [5] are
using dynamically generated JavaScript files to attack the
privacy of a victim. Singh et al. [7] describe major access
control flaws in browsers. Complicated side-channels
have been abused to read DOM properties in [23].

Various non-academic publications describe ways to
bypass the SOP. Jain [37] states that Safari v6.0.2 does
not have SOP restrictions in case the file protocol
is used. In 2010, Stone [38] showed that UI redress-
ing can be used to bypass the SOP. Even if the SOP
is restricting access on the script level, copy-and-paste
as well as drag-and-drop actions are not restricted. In
2012, Heyes [39] showed that the location of a window
can be accessed cross-origin in FF; however, this should
not be allowed. Three years later, Bentkowski demon-
strated with CVE-2015-7188 that FF’s ≤42 SOP can

be bypassed by adding whitespace characters to IP ad-
dress strings.11 In 2016, Ormandy [40] showed that Co-
modo’s browser Chromodo disables, at least partially, the
SOP and thus Chromodo “actually disables all web secu-
rity”. There are also SOP bypasses via Java applets [41],
Adobe Reader [42], Adobe Flash [11], and inter alia Mi-
crosoft Silverlight [10].

Formal approaches to Web Security. Yang et al. [6]
propose to describe the SOP in terms of Information
Flow Control. Akhawe et al. [43] have a much broader
scope and describes the backbone of a formal model for
the Web itself.

Other Approaches. Crites et al. [44] proposed the ab-
straction and access control model OMash, as a replace-
ment of SOP. Barth et al. [45] proposed a browser exten-
sion system for protecting browsers from extension vul-
nerabilities. They reused the SOP to isolate extensions
from attacks, which needs inter alia access to browser
internals and web page data. Chen et al. [46] described
an opt-in app isolation mechanism that acts like the user
is executing different browsers. Even if the attacker is
able to act in the same origin, the users credentials might
only be available in a logged-in state which is isolated.
Stamm et al. [47] proposed CSP, which is implemented
in all modern browsers. In CSP, code injection attacks
are mitigated through restrictions imposed on code ori-
gins (whitelisting of allowed origins), and through aban-
doning inline code. Jackson and Wang [48] introduced
Subspace as a cross-domain communication primitive al-
lowing communication across domains.

7 Access Control Policies

Since SOP-DOM restricts access of subjects (mainly
JavaScript code) to web objects, we think that an appro-
priate formal model could be found amongst the class of
access control policies. Access control policies restrict
the access of subjects from a set S (humans, machines
or code) to objects from a set O. In the following, we
discuss how well the three main classes fit our findings.

SOP-DOM is a global access control policy regulating
access between websites throughout the Internet; how-
ever, decisions through the SOP-DOM can only be made
on that which is locally available. This data includes
the web origins of the different subjects and objects, the
HTML markup (elements and attributes), and more re-
cently, security policies communicated through HTTP
headers like CORS, CSP, X-Frame-Options, and others.

11https://www.mozilla.org/en-US/security/
advisories/mfsa2015-122/

https://www.mozilla.org/en-US/security/advisories/mfsa2015-122/
https://www.mozilla.org/en-US/security/advisories/mfsa2015-122/

In SOP-DOM, the set O of objects may contain any
element or property of the local DOM of the web page.
Typically, access rights granted to two objects o1 and o2
should only differ if the Web Origins of these two objects
differ. The set S of subjects could be defined as S = O;
however, this would only result in numerous “inactive”
subjects which do not need any access rights since they
never access any other objects (e.g., text nodes). We
therefore restrict the set S to “active” objects, where the
definition of “active” still awaits a mathematically pre-
cise definition. We include all script objects in S and all
CSS code; however, since the discovery of scriptless at-
tacks [23], there may be a need to extend this definition.

7.1 Discretionary Access Control (DAC)

DAC access control is well-known from operating sys-
tems (OSs); each user has a login name and the OS de-
cides if this particular user has access to a certain re-
source (e.g., a data file or network printer). Each resource
also has a unique name; therefore, S and O contain the
names of users and resources. Another example is email
encryption in which read access is granted on the basis
of the RFC 822 email addresses of the recipients.

Definition 1 In DAC, access rights are directly assigned
to subjects: the policy set P is a subset of S×O, and
subject s has access to object o if (s,o) ∈ P.

In the WWW, each subject from S and each object
from O can be assigned a unique name, which is the URL
at which it can be found. Thus, this part would fit in the
DAC model. However, there is no global “web operating
system” which keeps track of all possible pairs in S×O.
Instead SOP-DOM uses only a part of this name in its
access decisions, namely the Web Origin.

Some sources trivialize RFC 6454 in the sense that
they state that read and write access are only possible
if the Web Origins of the subject and object are identical.
If this was true, it would be a perfect fit for DAC and a
very simple global DAC policy could be formulated as
follows:

(s,o) ∈ P ⇐⇒ origin(s) = origin(o).

This however is simply incorrect, since in many cases
(s,o) ∈ P even if origin(s) 6= origin(o), for example, in
case a script s was embedded via a <script> element,
or if s is contained in a sandboxed iFrame with top-level
frame access.

Unfortunately, the elegant DAC-based definition of
SOP-DOM via web origins does not fit.

7.2 Role-Based Access Control (RBAC)
RBAC is often used in distributed environments as an ab-
straction to improve the manageability of access control
rules. By means of example, the role system adminis-
trator may be assigned to different subjects over time or
even periodically, and this role has many important ac-
cess rights. Instead of assigning, revoking, and reassign-
ing these access rights periodically to individual subjects,
the access rights are assigned to the role “system admin-
istrator”, and this single role is assigned, revoked and
reassigned over time.

Definition 2 In RBAC, subjects are assigned to roles
from a set R, and access rights are assigned to roles:
P1 ⊆ S×R,P2 ⊆ R×O, and s has access to o if there
exists a role r such that (s,r) ∈ P1 and (r,o) ∈ P2.

In typical RBAC installations, access rights to individ-
ual resources are assigned manually by the system ad-
ministrator. This is problematic for SOP-DOM, since
access policies must be created automatically. We dis-
cuss the following variant of RBAC where roles are as-
signed to both subjects and objects, and access decisions
are based on both roles only.

Definition 3 In enhanced RBAC (eRBAC), subjects are
assigned subject roles from a set RS, objects are assigned
object roles from a set RO, i.e. PS ⊆ S×RS,PO ⊆O×RO.
Access rights are assigned between roles: P ⊆ RS×RO.
So subject s has access to object o if there exists roles
rs ∈ RS and ro ∈ RO such that (s,rs) ∈ PS,(o,ro) ∈ PO
and (rs,ro) ∈ P.

Since we have identified the important influence of the
embedding element EE on the access decisions in SOP-
DOM, we may use EE to assign a “role” to subjects and
objects. So in SOP-DOM, PS and PO would be computed
locally from the HTML markup and additional security
policies, and P would be the global SOP-DOM rules im-
plemented in each browser.

For example, to specify that both external and inline
scripts have full cross-origin read and write access rsco

rw
we may formulate:

(s,rsco
rw) ∈ PS ⇐⇒ EE(s) = <script>

∨EE(s) = HD.
(1)

Access to objects is again mainly defined by the em-
bedding element. An image embedded via is,
for example, inaccessible at all, whereas the same image
embedded via <canvas> is partially readable. So we
could define a role roso

r with the following equation:

(o,roso
r) ∈ PO ⇐⇒ EE(o) /∈ {< img>,...} (2)

Web origins could be taken into account in P by stat-
ing that for all values X , (rsso

X ,roso
X) ∈ P (subject role

has same-origin access to object role), (rsco
X ,roco

X) ∈ P
(subject role has cross-origin access to object role), and
(rsco

X ,roso
X) ∈ P (if subject role has cross-origin access to

object role, then it also has same-origin access).
This shows that eRBAC seems to be a feasible model,

however, the rules to assign roles to subjects and objects
could become quite complicated because in addition to
the EE, we have identified at least two attribute values
(cors and sandbox) which may influence the assignment
of such roles. This complexity will be increased if we
extend the scope to HTTP security policies such as CSP
and pseudo-URIs like data:, which are not covered by
our current analysis.

7.3 Attribute-Based Access Control
Attribute-Based Access Control (ABAC) [49] is a flex-
ible access control mechanism used in, for example,
XACML [50]. It may also be used to implement RBAC:
roles can be modeled as role attributes assigned to both
subject and object. The policy decision in ABAC may
depend on other subject, object and environment at-
tributes as well.

Definition 4 Let Ai = {NULL,value1
i , ...,valueki

i } be the
set of different values of attribute i. Let S A = A1× ...×
Al , OA = Al+1 × ...× Am and E A = Am+1 × ...× An
be the cartesian products of all subject, object and en-
vironment attribute values. Let R be the set of all ac-
cess rights. Then an ABAC policy P is defined as
P ⊆S A ×OA ×E A ×R.

Now let ~sa be the array of subject attributes of subject
s, ~oa the array of object attributes of object o, and ~ea
the actual array of environment attributes. Then subject
s has access r ∈ R to object o if the array ~a, formed
by concatenating ~sa, ~oa, ~ea, and r, is contained in P:
~a ∈P .

ABAC could be suitable for SOP-DOM because we
can model any parameter that influences the access deci-
sions as an attribute. This allows to give a unified treat-
ment to some well-known concepts.

Extended Web Origins. Both subject and object have
attributes from which their Web Origin can be com-
puted. In the classical definition of Web Origins
in RFC6454 these are protocol (location.
protocol), domain (location.hostname)
and port (location.port).

I We can, for example, extend this definition to
take the legacy document.domain decla-
ration into account (see below). We define

an additional variable dd and assign the value
of document.domain to it. All these vari-
ables are both subject and object variables (cf.
Section 7), and are present for both HD and ED
(cf. Table 2).

I The assignment of random Web Origins to
sandboxed iFrames can be specified by stat-
ing that origin(o) = $RAND if sandbox(o) =
T RUE.

Embedding Element. The important role of the embed-
ding element EE is modeled as a variable ee, appli-
cable to both subject and object, but set only for the
embedded document ED. The value of ee is set to
the type of the embedding element. It modifies both
same-origin and cross-origin access decisions sig-
nificantly.

Additional Attributes. Similar to the ee attribute, the
cors and sandbox attributes are only defined for
the embedded document ED. For cors, our tests
revealed that this attribute modifies access rights to
a web object and therefore, it is only an object at-
tribute.

Attributes not fixed by the HTML source code. The
ABAC model also defines environment attributes,
which may not depend on subject or object alone
but rather on the execution environment. The only
attribute we could qualify to be in E A during our
tests is sandbox, since it may be set interactively
by using a suitable directive of Content Security
Policy.

Extended Web Origin. The ABAC model for SOP-
DOM can be presented as the set P but this does not
give any insights into the structure of SOP-DOM. How-
ever, four of the seven variables can be combined into a
very elegant description of an extended Web Origin. This
shows that the ABAC model can also be used to simplify
the description of SOP-DOM.

1 Read(protocol,domain,port,dd);
2 if dd=NULL or (dd is not a

superdomain)
3 then wo:=(protocol,domain,port)
4 else wo:=(protocol,dd,NULL)

Listing 5: Computation of extended Web Origin.

Listing 5 shows how an extended web origin is com-
puted from the four given ABAC variables. Please note
that the else branch of this algorithm has been veri-
fied by our testbed but different descriptions exist in the
literature. In contrast to previous descriptions of the in-
teraction of Web Origins and the document.domain

declaration, the novel ABAC based concept of extended
Web Origin is both simpler ans less error-prone.

7.4 Summary
The requirements on an access control model for SOP-
DOM can be formulated as follows: the general rules
of SOP-DOM must be expressible without reference to
the URL or the HTML context of a web subject or ob-
ject, and to apply the SOP-DOM rules, URL and HTML
context of each web object must be transformed into an
abstracted description which then will serve as an input
to the general SOP-DOM rules.

This rules out DAC as a model, since DAC rules would
simply consist of a large global matrix, where each web
object worldwide has a row, and each subject a column.

eRBAC and ABAC both seem promising candidates,
since they fit the general requirements. A tentative for-
malization of the test results presented in this paper in
both models could lead to new test cases which could
help to decide which of the two approaches, if any, is
better suited to formalize SOP-DOM.

8 Conclusions & Future Work

Our analysis highlights the importance to evaluate ev-
ery single possibility of browser interactions in the SOP-
DOM. Different browser data sets can be used to identify
inconsistencies across implementations, which can lead
to security vulnerabilities. Although edge cases (CORS,
sandbox attribute) are mainly responsible for the detected
browser behaviors in our evaluation, commonly known
cases can also have differences and even vulnerabilities.
Consequently, browser vendors have to compare their
own implementation with those of other vendors.

Our discussion on access control policies as a model
to describe the SOP-DOM helps for a better understand-
ing. Browser implementations can use our insights to de-
scribe the SOP-DOM implementation more formally and
thus preemptively prevent SOP bypasses. We strongly
believe that a more formal SOP-DOM definition will
help the scientific as well as the pentesting community
to find more severe vulnerabilities. Our test results of the
ten tested browsers are available on the testbed website.

Future Work. To extend the coverage, future work
may address the following areas: (1.) local storage/ses-
sion storage or even new data types like Flash or PDF;
(2.) different protocols, including pseudo-protocols like
about: and data:; (3.) other elements with URL at-
tributes or properties; (4.) additional HTML attributes.

To generate novel insights into SOP-DOM, the path
taken by integrating the document.domain declara-
tion could be extended to other attributes like ee; for

sandboxed iFrames, for example, a random Web Origin
should be generated according to the specification. This
is however only possible if other EEs imposing similar
restrictions (e.g., the element) also use random
Web Origins. This remains to be tested.

References

[1] W3C, “Same origin policy,” https://www.w3.org/
Security/wiki/Same_Origin_Policy, January 2010.

[2] Mozilla, “Same-origin policy,” https:
//developer.mozilla.org/en-US/docs/Web/Security/
Same-origin_policy, March 2016.

[3] J. Ruderman, “The same origin policy,” Online,
http://www-archive.mozilla.org/projects/security/
components/same-origin.html, 2008.

[4] V. Apparao, S. Byrne, M. Champion, S. Isaacs,
I. Jacobs, A. J. Le Hors, G. T. Nicol, J. Robie,
R. Sutor, C. Wilson, and L. Wood, “Document ob-
ject model (DOM) level 1 specification,” World
Wide Web Consortium, Recommendation REC-
DOM-Level-1-19981001, Oct. 1998.

[5] S. Lekies, B. Stock, M. Wentzel, and M. Johns,
“The unexpected dangers of dynamic javascript,”
in USENIX Security 2014, ser. SEC’15. Berkeley,
CA, USA: USENIX Association, 2015, pp. 723–
735.

[6] E. Z. Yang, D. Stefan, J. C. Mitchell, D. Mazières,
P. Marchenko, and B. Karp, “Toward principled
browser security,” in HotOS. USENIX Associa-
tion, 2013.

[7] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee,
“On the incoherencies in web browser access con-
trol policies,” in Proceedings of the 2010 IEEE
Symposium on Security and Privacy, ser. SP ’10.
Washington, DC, USA: IEEE Computer Society,
2010, pp. 463–478.

[8] M. Zalewski, “Browser security handbook,”
Google Code, 2010.

[9] A. van Kesteren, “Cross-origin resource shar-
ing,” W3C, W3C Recommendation, Jan.
2014, http://www.w3.org/TR/2014/REC-cors-
20140116/.

[10] W. Alcorn, C. Frichot, and M. Orrù, The Browser
Hacker’s Handbook. John Wiley & Sons, 2014.

[11] G. S. Kalra, “Exploiting insecure crossdomain.xml
to bypass same origin policy (actionscript poc),”

https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
http://www-archive.mozilla.org/projects/security/components/same-origin.html
http://www-archive.mozilla.org/projects/security/components/same-origin.html

Online, http://gursevkalra.blogspot.de/2013/08/
bypassing-same-origin-policy-with-flash.html,
August 2013.

[12] X. Zheng, J. Jiang, J. Liang, H. Duan, S. Chen,
T. Wan, and N. Weaver, “Cookies lack integrity:
Real-world implications,” in USENIX Security
2015. Washington, D.C.: USENIX Association,
Aug. 2015, pp. 707–721.

[13] A. Bortz, A. Barth, and A. Czeskis, “Origin cook-
ies: Session integrity for web applications,” Online,
http://abortz.net/papers/session-integrity.pdf, Web
2.0 Security and Privacy (W2SP), 2011.

[14] C. Masone, K.-H. Baek, and S. Smith, “Wske: Web
server key enabled cookies,” in Financial Cryp-
tography and Data Security, ser. Lecture Notes in
Computer Science, S. Dietrich and R. Dhamija,
Eds. Springer Berlin Heidelberg, 2007, vol. 4886,
pp. 294–306.

[15] C. Karlof, U. Shankar, J. D. Tygar, and D. Wag-
ner, “Dynamic pharming attacks and locked same-
origin policies for web browsers,” in ACM CCS
2007, ser. CCS ’07. New York, NY, USA: ACM,
2007, pp. 58–71.

[16] Y. Oren and A. D. Keromytis, “Attacking the inter-
net using broadcast digital television,” ACM Trans.
Inf. Syst. Secur., vol. 17, no. 4, pp. 16:1–16:27, Apr.
2015.

[17] M. Smith, “HTML: The markup language (an
HTML language reference),” W3C, W3C Note,
May 2013, http://www.w3.org/TR/2013/NOTE-
html-markup-20130528/.

[18] A. Barth, “The Web Origin Concept,” RFC 6454
(Proposed Standard), Internet Engineering Task
Force, Dec. 2011.

[19] C. McCormack, J. Watt, D. Schepers, A. Grasso,
P. Dengler, J. Ferraiolo, E. Dahlström, D. Jack-
son, J. Fujisawa, and C. Lilley, “Scalable
vector graphics (SVG) 1.1 (second edition),”
W3C, W3C Recommendation, Aug. 2011,
http://www.w3.org/TR/2011/REC-SVG11-
20110816/.

[20] W3C, “Html: The markup language (an html
language reference),” https://www.w3.org/TR/
2012/WD-html-markup-20121025/elements.html,
February 2017.

[21] WHATWG, “The elements of html,” https:
//html.spec.whatwg.org/multipage/semantics.html,
February 2017.

[22] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jack-
son, “Busting frame busting: a study of clickjack-
ing vulnerabilities at popular sites,” in in IEEE
Oakland Web 2.0 Security and Privacy (W2SP
2010), 2010.

[23] M. Heiderich, M. Niemietz, F. Schuster, T. Holz,
and J. Schwenk, “Scriptless attacks: Stealing the
pie without touching the sill,” in Proceedings of the
2012 ACM Conference on Computer and Commu-
nications Security, ser. CCS ’12. New York, NY,
USA: ACM, 2012, pp. 760–771.

[24] R. Dhamija, J. D. Tygar, and M. Hearst, “Why
phishing works,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Sys-
tems, ser. CHI ’06. New York, NY, USA: ACM,
2006, pp. 581–590.

[25] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, “At-
tacks on webview in the android system,” in Pro-
ceedings of the 27th Annual Computer Security Ap-
plications Conference, ser. ACSAC ’11. New
York, NY, USA: ACM, 2011, pp. 343–352.

[26] A. Barth, C. Jackson, and J. C. Mitchell, “Secur-
ing frame communication in browsers,” Commun.
ACM, vol. 52, no. 6, pp. 83–91, Jun. 2009.

[27] R. Berjon, S. Faulkner, T. Leithead, E. Doyle
Navara, E. O’Connor, and S. Pfeiffer, “HTML5 —
A vocabulary and associated APIs for HTML and
XHTML,” World Wide Web Consortium, Recom-
mendation REC-html5-20141028, Oct. 2014.

[28] M. Zalewski, The Tangled Web: A Guide to Secur-
ing Modern Web Applications. No Starch Press,
2012.

[29] W3C, “Service workers,” https://www.w3.org/TR/
service-workers/.

[30] Mozilla, “Serviceworker (this is an experimental
technology),” https://developer.mozilla.org/en-US/
docs/Web/API/ServiceWorker.

[31] ——, “Using web workers,” https://developer.
mozilla.org/en-US/docs/Web/API/Web_Workers_
API/Using_web_workers.

[32] C. Jackson and A. Barth, “Beware of finer-
grained origins,” in In Web 2.0 Security and
Privacy (W2SP 2008), 2008. [Online]. Available:
http://seclab.stanford.edu/websec/origins/fgo.pdf

[33] H. J. Wang, C. Grier, A. Moshchuk, S. T. King,
P. Choudhury, and H. Venter, “The multi-principal
os construction of the gazelle web browser,” in

http://gursevkalra.blogspot.de/2013/08/bypassing-same-origin-policy-with-flash.html
http://gursevkalra.blogspot.de/2013/08/bypassing-same-origin-policy-with-flash.html
http://abortz.net/papers/session-integrity.pdf
https://www.w3.org/TR/2012/WD-html-markup-20121025/elements.html
https://www.w3.org/TR/2012/WD-html-markup-20121025/elements.html
https://html.spec.whatwg.org/multipage/semantics.html
https://html.spec.whatwg.org/multipage/semantics.html
https://www.w3.org/TR/service-workers/
https://www.w3.org/TR/service-workers/
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorker
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorker
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
http://seclab.stanford.edu/websec/origins/fgo.pdf

USENIX Security 2009, ser. SSYM’09. Berkeley,
CA, USA: USENIX Association, 2009, pp. 417–
432.

[34] S. Chen, D. Ross, and Y.-M. Wang, “An
analysis of browser domain-isolation bugs and
a light-weight transparent defense mechanism,”
in Proceedings of the 14th ACM Conference on
Computer and Communications Security, ser. CCS
’07. New York, NY, USA: ACM, 2007, pp.
2–11. [Online]. Available: http://doi.acm.org/10.
1145/1315245.1315248

[35] C. Jackson, A. Barth, A. Bortz, W. Shao, and
D. Boneh, “Protecting browsers from dns rebind-
ing attacks,” ACM Trans. Web, vol. 3, no. 1, pp.
2:1–2:26, Jan. 2009.

[36] M. Johns, S. Lekies, and B. Stock, “Eradicating
dns rebinding with the extended same-origin
policy,” in Proceedings of the 22Nd USENIX
Conference on Security, ser. SEC’13. Berkeley,
CA, USA: USENIX Association, 2013, pp. 621–
636. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2534766.2534820

[37] J. Jain, “Sop bypassing in safari,” On-
line, http://resources.infosecinstitute.com/
bypassing-same-origin-policy-sop-part-2/, Last
visited Oct. 2015.

[38] P. Stone, “Next generation clickjacking new
attacks against framed web pages,” On-
line, http://www.contextis.com/documents/5/
Context-Clickjacking_white_paper.pdf, April
2010.

[39] G. Heyes, “Firefox knows what your
friends did last summer,” Online,
http://www.thespanner.co.uk/2012/10/10/
firefox-knows-what-your-friends-did-last-summer/,
October 2012.

[40] Ormandy, “Comodo: Comodo "chromodo"
browser disables same origin policy, effectively
turning off web security.” https://code.google.com/
p/google-security-research/issues/detail?id=704,
Jan. 2016.

[41] N. Poole, “Java applet same-origin policy bypass
via http redirect,” Online, http://is.gd/MWMaUZ,
November 2011.

[42] B. Rios, F. Lanusse, and M. Gentile, “Vulner-
ability summary for cve-2013-0622,” Online,
https://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2013-0622, June 2013.

[43] D. Akhawe, A. Barth, P. E. Lam, J. C. Mitchell,
and D. Song, “Towards a formal foundation of web
security,” in CSF. IEEE Computer Society, 2010,
pp. 290–304.

[44] S. Crites, F. Hsu, and H. Chen, “Omash: Enabling
secure web mashups via object abstractions,” in
ACM CCS 2008, ser. CCS ’08. New York, NY,
USA: ACM, 2008, pp. 99–108.

[45] A. Barth, A. P. Felt, P. Saxena, and A. Boodman,
“Protecting browsers from extension vulnerabili-
ties,” in NDSS 2010, 2010.

[46] E. Y. Chen, J. Bau, C. Reis, A. Barth, and C. Jack-
son, “App isolation: Get the security of multiple
browsers with just one,” in Proceedings of the 18th
ACM Conference on Computer and Communica-
tions Security, ser. CCS ’11. New York, NY, USA:
ACM, 2011, pp. 227–238.

[47] S. Stamm, B. Sterne, and G. Markham, “Reining in
the web with content security policy,” in Proceed-
ings of the 19th International Conference on World
Wide Web, ser. WWW ’10. New York, NY, USA:
ACM, 2010, pp. 921–930.

[48] C. Jackson and H. J. Wang, “Subspace: Secure
cross-domain communication for web mashups,” in
WWW, ser. WWW ’07. New York, NY, USA:
ACM, 2007, pp. 611–620.

[49] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer,
K. Sandlin, R. Miller, and K. Scarfone, “Guide
to attribute based access control (abac) definition
and considerations,” NIST Special Publication 800-
162, January 2014.

[50] E. R. (Ed.), “extensible access control markup lan-
guage (xacml) version 3.0,” http://docs.oasis-open.
org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf,
January 2013.

http://doi.acm.org/10.1145/1315245.1315248
http://doi.acm.org/10.1145/1315245.1315248
http://dl.acm.org/citation.cfm?id=2534766.2534820
http://dl.acm.org/citation.cfm?id=2534766.2534820
http://resources.infosecinstitute.com/bypassing-same-origin-policy-sop-part-2/
http://resources.infosecinstitute.com/bypassing-same-origin-policy-sop-part-2/
http://www.contextis.com/documents/5/Context-Clickjacking_white_paper.pdf
http://www.contextis.com/documents/5/Context-Clickjacking_white_paper.pdf
http://www.thespanner.co.uk/2012/10/10/firefox-knows-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2012/10/10/firefox-knows-what-your-friends-did-last-summer/
https://code.google.com/p/google-security-research/issues/detail?id=704
https://code.google.com/p/google-security-research/issues/detail?id=704
http://is.gd/MWMaUZ
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-0622
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-0622
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

	Introduction
	Foundations
	Methodology
	SOP-DOM Attributes
	Access Control Test Cases

	Evaluation
	Experiment Setup
	Results
	Different Browser Behaviors
	Cross-Origin Login Oracle Attack.

	Limitations
	Related Work
	Access Control Policies
	Discretionary Access Control (DAC)
	Role-Based Access Control (RBAC)
	Attribute-Based Access Control
	Summary

	Conclusions & Future Work

