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Abstract

OpenlD Connect is the OAuth 2.0-based replacement for
OpenID 2.0 (OpenID) and one of the most important Single
Sign-On (SSO) protocols used for delegated authentication.
It is used by companies like Amazon, Google, Microsoft,
and PayPal. In this paper, we systematically analyze well-
known attacks on SSO protocols and adapt these on OpenlD
Connect. We additionally introduce two novel attacks on
OpenlD Connect, Identity Provider Confusion and Malicious
Endpoints Attack abusing lacks in the current specification
and breaking the security goals of the protocol. We commu-
nicated these attacks in 2014 with the authors of the OpenID
Connect specification and helped to develop a fix (currently
an RFC Draft).

We categorize the described attacks in two classes:
Single-Phase Attacks abusing a lack of a single security
check and Cross-Phase Attacks requiring a complex attack
setup and manipulating multiple messages distributed across
the whole protocol workflow. We provide an evaluation of
officially referenced OpenID Connect libraries and find 75%
of them vulnerable to at least one Single-Phase Attack.
All libraries are susceptible Cross-Phase Attacks which is
not surprising since the attacks abuse a logic flaw in the
protocol and not an implementation error. We reported the
found vulnerabilities to the developers and helped them
to fix the issues. We address the existing problems in a
Practical Offensive Evaluation of Single Sign-On Services
(PrOfESSOS). PrOfESSOS is our open source implemen-
tation for fully automated Evaluation-as-a-Service for SSO.
PrOfESSOS introduces a generic approach to improve the
security of OpenID Connect implementations by system-
atically detecting vulnerabilities. In collaboration with the
IETF OAuth and OpenID Connect working group, we in-
tegrate PrOfESSOS into the OpenID Connect certification
process.

PrOfESSOS is available at https://openid.sso-security.de
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(1) ‘“w =[ issuer ] [ subject ]
d
(2.) @:[ timestamp ] [ expired ] [ nonce ]

Figure 1: Abstract overview of an SSO authentication token.

1. Introduction

Single Sign-On (SSO) is a concept to delegate the au-
thentication of an End-User on a Service Provider (SP) to a
third party: the so-called Identity Provider (IdP). Standard-
ized in 2014, OpenID Connect is the latest SSO protocol
and supported by large companies like Google, Microsoft
and PayPal. In 2015, Google announced to abandon the
preceding protocol OpenID 2.0 (OpenID) and recommended
switching to its OAuth 2.0 (OAuth) based successor OpenlD
Connect. The OpenID Connect specification itself offers a
list of available libraries supporting OpenID Connect [25],
and an additional list of certified libraries [24]. On the one
hand, using such a library makes the integration of OpenlD
Connect into a web application quite easy since the entire
authentication (including all security-related operations) can
be delegated to it. On the other hand, the security of the web
application then depends on the used library.

SSO Attacks. We investigated attacks on well-known SSO
protocols including SAML [2, 29], Browserld [9, 10], and
OpenID [19, 33] to get a systematization for the differ-
ent OpenID Connect protocol. The essence of each SSO
protocol is the authentication token containing statements
regarding the End-User who is going to be authenticated.
These statements can be grouped into four classes:
(1.) identity, (2.) recipient, (3.) freshness, and (4.) signature.
The authentication token is similar across all SSO protocols
(Figure 1 shows the case of OpenID Connect) and form the
basis of our identified Single-Phase Attacks: by changing
one or more of the values in the token different attacks



can be conducted. For example, the XML Signature Exclu-
sion attack on SAML [29] targets the signature statements,
while the identity spoofing attack on OpenlID [19] and on
Browserld [9] targets the identity statements.

More complex attacks are Cross-Phase Attacks. They
target not only the token statements, but multiple protocol
messages in different phases of the protocol execution. Due
to the high complexity of such attacks, they are very hard
to identify. In this paper, we describe three different Cross-
Phase Attacks: one implementation flaw (Issuer Confusion),
and two specification flaws (IdP Confusion, Malicious End-
points) that have not been previously discovered and could
only be revealed through a deep protocol understanding of
the relation between all SSO messages.

The specification flaws have been reported to the authors
of the OpenID Connect specification (together with another
independent research group which has identified similar
results on OAuth). In collaboration with the OAuth and
OpenID Connect working groups, we have created a fix for
them that is currently available as a draft [17].

Research Challenges. Correctly implementing SSO li-
braries is a challenging task and previous research on
different protocols has revealed serious vulnerabilities in
implementations [19, 29, 32, 41]. We focus on OpenlD
Connect, because it is the latest SSO protocol, and includes
most features from previous SSO protocols, which opens
doors for all potential vulnerabilities. OpenID Connect is
by far more complex than any previous SSO protocol. It
supports different protocol variants (called flows), diverse
SP types (Websites, mobile apps and native applications),
and extensively uses server-to-server communication. In
summary, this leads to new challenges and insights during
its investigation. This paper answers three general research
questions:

(Q1) OpenID Connect — as the latest SSO protocol — should
be aware of previous and known attacks. Which ex-
isting attacks are addressed by the specification and
which are not?

(Q2) How secure are the officially referenced implementa-
tions and do they follow the specification hints regard-
ing attacks?

(Q3) How can the implementation of SSO libraries be
improved regarding state-of-the-art security?

Evaluation-as-a-Service. In this paper, we show how at-
tacks, partially known from other SSO systems, can be
adapted to the new SSO system OpenlD Connect. The
adaption ranges from simple format changes (e.g. replay
attacks) to complex Cross-Phase Attacks.

Our results highlight that even simple and well-studied
attacks still exist and remain an open problem. As depicted
in Table 2 (p. 14), 75% of the evaluated libraries were
susceptible to at least one critical issue resulting into broken
End-User authentication. Even if the specification addresses
such issues (Q1), implementations are vulnerable to them
(Q2). The gap between specification and implementation has
several reasons ranging from too complex specifications to
standard developer mistakes and forgotten checks.

To address this problem, and to bring an implemen-
tation closer to the state-of-the-art (Q3), we propose a
Practical Offensive Evaluation of Single Sign-On Services
(PrOfESSOS). PrOfESSOS is a security Evaluation-as-a-
Service (EaaS) for SSO, applicable to all existing libraries,
independent of the used programming language. To the best
of our knowledge, this is the most beneficial and reliable
approach to provide a practical evaluation of SSO security
and it can be integrated into the development cycle of new
as well as existing OpenID Connect libraries. To execute
all attacks PrOfESSOS applies a barely known penetration
testing concept — it simulates both, an honest IdP and an
attacker IdP [19]. The concept of using attacker IdP means
that the IdP behaves maliciously with respect to the protocol
flow, for example, by removing or manipulating parameters,
or by sending messages in a wrong order. Thus, PrOfESSOS
controls more SSO related messages and supports more (and
especially more complex) attacks than other SSO evaluation
tools.

In addition to finding security issues, PrOfESSOS offers
information on the vulnerabilities and advices how to fix
them. A demo is available at https://openid.sso-security.de.

Open Source. In recent years, many research papers imple-
mented automated validation tools. These tools were then
left unpublished or even protected by patents. Published
tools are not documented or used. We believe that proper
open source tools help the scientific community to proceed
with the research and produce verifiable and comparable
results. In addition, this may help other researchers to
quickly solve annoying but repeating challenges (e.g., the
automatism to login into a website). PrOfESSOS is open
source and available on Github.!

Our Contribution.

» We show how to adapt attack patterns known from other
SSO protocols to OpenID Connect and categorize them
into Single-Phase Attacks and Cross-Phase Attacks.

» We present two unpublished Cross-Phase Attacks vul-
nerabilities on OpenID Connect (IdP Confusion, Mali-
cious Endpoints Attack), which abuse a logical flaw in
the OpenID Connect specification.

» We provide a security evaluation of all officially listed
OpenlD Connect libraries. We responsibly disclosed all
security issues to the according developers and helped
to fix them.

» We provide PrOfESSOS, our comprehensive open
source Evaluation-as-a-Service platform. PrOfESSOS is
the first tool automatically analyzing OpenID Connect
implementations and capable to evaluate high complex
Cross-Phase Attacks.

» We are cooperating with the OAuth and OpenID Connect
working group to integrate PrOfESSOS into the OpenID
Connect certification process to support the development
and security of SSO.

—_

. https://github.com/RUB-NDS/PrOfESSOS



2. Single Sign-On in Three Phases

Every SSO protocol consists of three phases (cf. Fig-
ure 2): (1.) Phase 1: registration and trust establishment
between Service Provider (SP) and Identity Provider (IdP),
(2.) Phase 2: End-User authentication on the IdP, (3.) Phase
3: End-User authentication on the SP via the authentication
token.

Service Provider Identity Provider
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Enduser
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(. Phase 1: Trust Establishment
N

Phase 2:Joken Generation

)

v
(. Phase 3: Token Redemption
N

-

R R

Figure 2: SSO consists of three phases.

Phase 1: Trust Establishment. In the first phase the trust
establishment phase between SP and IdP is provided. In
classical SSO systems, trust is established by an admin-
istrator manually registering a specific IdP on the SP. A
typical example is SAML: The administrator visits the IdP
and downloads the IdP’s metadata, for instance its certifi-
cate. Next, he uploads it on the SP and configures further
parameters like important URLs of the IdP. We call this
full trust establishment, since only authorized people (the
administrator) can invoke this manual trust establishment.

Modern SSO systems offer a more flexible alternative to
this approach: dynamic registration that is executed automat-
ically on the fly during an End-User’s login procedure. It is
supported by protocols like OpenlD, Browserld, OAuth and
OpenID Connect and basically works as follows: (1.) The
End-User starts a login process on the SP by submitting
his identifier (e.g., his email bob@idp.com). (2.) The SP
extracts the domain of it (the part after the @-sign) to
identify the IdP. (3.) Then, the SP can dynamically register
on the IdP, for example, by sending a POST request to a
specified URL on the IdP. We call this conditional trust es-
tablishment, since every End-User can invoke this dynamic
trust establishment on a custom IdP.

SSO systems based on a conditional trust establishment
require additional verification steps by processing an SSO
token. If these steps are not implemented correctly, attacks
such as ID Spoofing (IDS) (see Section 5.1) are applicable.

Phase 2: Token Generation. In the second phase, the SP
typically forwards the End-User to the IdP. This is usually
an HTTP redirect to a pre-registered URL on the IdP with
additional parameters (e.g., the identity of the SP). The End-
User then logs in at the IdP, which then generates an SSO
token. The token is then submitted to the SP.

Phase 3: Token Redemption. In the final phase, the SP
receives the SSO token in order to authenticate the End-
User. This is a security critical process, since the token
contains multiple parameters which must be verified.

SSO Token Structure. Independent of the concrete SSO
protocol implementation, every SSO token contains infor-
mation that can be categorized as follows:

» Class I: Identity. The SSO token contains information
about a subject (e.g. an End-User) authenticating at
the SP. In some protocols, this is an email address.
Others like OpenID, OpenID Connect and BrowserlId use
unique URLSs or usernames. An important fact about this
category is that multiple parameters (and not only one)
represent the unique identity of the End-User.

» Class II: Recipient. An SSO token contains information
on the intended recipient, for example, the URL or a
unique ID of the SP.

» Class III: Freshness. Parameters like timestamps and
nonces belong to this category.

» Class IV: Signature. The SSO token (or a subset of it)
can be signed. The signature value as well as parameters
specifying meta information like key references or used
algorithms belong to this category.

3. Threat Model

The Single-Phase and Cross-Phase Attacks presented in
the following sections have the goal to login with an identity
of some victim.> We distinguish between two categories
describing the behavior of the victim:

Category A (Cat A). Attacks belonging to this category
need certain interaction of the victim. For example, the
victim has to click on a link, or he has posted his (expired)
token somewhere on the web (e.g., in a support forum).

Category B (Cat B). This category is stealthy for the
victim: it does not need any interaction. This means that the
attacker can log in with an arbitrary identity, for example,
an @google.com identity, on the SP simply by using his
attacker IdP. Cat B attacks are more powerful than Cat A
since no user interaction is necessary.

Attacker Capabilities. The attacks introduced in this paper
have been strictly verified in the web attacker model. Thus,
the attacker does not control the network and is not able
to eavesdrop or manipulate network communications. He
can to set up a web service accessible on the Internet. The
attacker can use links (e.g. by posting them in web-blogs)
to lure the victim into opening a URL.

We assume that TLS channels are secure, the End-User
does not use a compromised/malicious software, and the
End-User detects Phishing attacks.

4. Attacker IdPs in SSO

One approach to analyze SSO is by using attacker
IdPs [9, 19]. At first glance this seems trivial: an IdP
is considered as a Trusted Third Party (TTP), allowing
it to compromise the security of the entire SP. But in
protocols such as OpenlD, Browserld, OAuth and OpenID

2. We also present Malicious Endpoints Attack with different goals, e.g.,
Denial-of-Service or Server Side Request Forgery.
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Connect, the IdPs are conditionally trusted. In other words:
the protocols themselves provide mechanisms detecting a
maliciously acting attacker IdP. It depends on the SP if these
mechanisms are implemented correctly.

Advantages. By using the concept of attacker IdPs more
messages can be analyzed since the used IdP takes part in
every phase and step of the protocol, controls the content of
every message, and can provide tests with valid or invalid
tokens. Note that the attacker IdP does not control the
communication between the browser and the SP, but since
it controls the messages that are forwarded to the SP (e.g.
by using HTTP redirects), he can even manipulate these
messages. Thus, this approach gives the full flexibility to
analyze an SSO protocol implementation.

Disadvantages. An important limitation is that such attacker
IdPs are bound to one protocol. An implementation of every
SSO protocol has to be created, but this is an acceptable
downside, since even the attacks themselves have to be
adapted to the specific protocol.

Applicability. There exist multiple SSO libraries providing
IdP functionality. Thus, every attacker can download, install
and configure such a library and deploy his own IdP — a cus-
tom 1dP. An attacker IdP is a custom IdP acting maliciously
by creating invalid or malicious tokens or exchanging the
order of sent messages [9, 19]. There are two ways enforcing
an SP to use the attacker IdP.

Manual configuration of the SP. First, an SP has to
establish a trust relationship with the IdP. For this purpose,
key material and important URLs (e.g., the URL of the IdP
and the callback URL of the SP) are exchanged manually.
As a result, the SP is able to verify the signature contained
in the received authentication tokens.

Dynamic configuration. In OpenID Connect, the features
Discovery [35] and Dynamic Registration [36] can be used
to establish on-the-fly a trust relationship between an SP and
the custom IdP (conditional trust establishment). In other
words, a user can enforce the usage of the attacker IdP by
entering its URL on the SP. The SP discovers all necessary
information about the IdP, such as supported cryptographic
algorithms, important URLs and exchanges the key material.
Similar approach is described for other SSO protocols like
SAML [5], OpenlD [30], and OAuth [15].

4.1. Comparison with other Approaches

By systematically studying previous work on SSO analy-
sis, we identify five other approaches to analyze SSO: man-
ual testing, formal analysis, static code analysis, dynamic

code analysis, and message invariants. We compare these
with our attacker IdP approach and describe the results.

Manual testing. Even though manual testing is often con-
sidered as out-of-scope in research papers and even not de-
scribed directly, it is an important part during every security
evaluation. Manual testing offers great flexibility, which is
needed at least at the beginning. Most research ideas start
by manual testing, so does this paper: we first applied our
attacks manually on multiple libraries to prove our ideas
and methodology. Since manual testing does not scale for
a larger number of targets, manual testing cannot be the
answer to research question Q3.

Formal Analysis. This approach provides a security evalu-
ation based on a formal protocol description, see Figure 4a.
The main goal of such analysis is to find generic vulnerabili-
ties. An important limitation however is that implementation
flaws and specific vulnerabilities are not covered, since
the Evaluation module (Eval) is not able to analyze real
network traffic and to see, how an implementation reacts to
manipulated messages.

This approach does not answer research question Q3
(and even Q2), because specifications precisely address sev-
eral attacks. For example, the OpenID Connect specification
clearly states how to prevent Replay attacks, but our obser-
vation via manual testing was, that implementations are not
aware of this. The real advantage of formal analysis relies
in finding generic issues in specifications like in SAML [1],
Browserld [9] and OAuth [12]. Thus, in a perfect world, this
step should be included during the creation of a specification
to proof its correctness, which was also stated by Bai et al.
[3].

Static Code Analysis. During a static code analysis, the
Eval module has full access to the code of the targeted
system. Figure 4b illustrates this approach.

Analyzing the program code is a reliable approach to
track down implementation flaws, for example, in the veri-
fication logic. However, static code analysis is hardly used
for SSO protocols. We see two reasons for this: (1.) such
analysis requires full (or at least partial) access to the code
of the running implementation (see dashed lines). This is
possible for a library evaluation (especially for open-source
libraries), but it is not applicable to online websites (e.g.,
Amazon). (2.) The biggest downside of static code analysis
is, that it has to be applied for every programming language
and in addition, for every SSO protocol.

Dynamic Code Analysis. Bai et al. [3] showed a more
convenient approach combining program code analysis with
formal analysis (cf. Figure 4c¢). In this case the Eval module
expects HTTP traces plus initial knowledge, for example,
the credentials of at least two different users. The Eval
module then creates formal model based on this information,
generates test cases, and simulates the SSO authentication.
The output of the tests can then be further inspected to
identify vulnerabilities.

Although dynamic code analysis is very flexible, it has
significant downsides: (1.) signed messages are considered
as unmodifiable and thus not evaluated. This is an enormous
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(d) Message invariants.

Figure 4: The Eval module has access to different messages and information in different approaches. Dashed lines are

accessible, solid lines are not accessible for Eval.

limitation regarding conditionally trusted SSO protocols
since attacks like IDS are not considered. (2.) the direct
communication between IdP and SP cannot be evaluated. By
this means, our Cross-Phase Attacks cannot be evaluated.

Message invariants. The message invariants approach [37,
41] is depicted in Figure 4d. The Eval module again expects
HTTP traces and analyzes the traffic to define messages
and parameters that are modifiable. Instead of creating large
subset of tests by executing all possibilities, it examines
relations between different parameters. Such relations can
be used to influence parameters in one message, which
automatically reflects in another one. In this manner points
of attacks can be identified and evaluated. The limitations
of this approach are identical with the previous one.

4.2. Lessons Learned

Since we need a scalable solution that can be applied
to numerous implementations, we need an approach which
can evaluate an implementation automatically. Therefore,
the manual approach is omitted. A formal approach unfor-
tunately does not help to find implementation issues, so we
cannot apply it, too. Static and dynamic code analysis have
the disadvantage that they depend on the used programming
language. Thus, this approach is difficult to apply, since we
have to implement this approach in dependence of each
language. In addition, the attack surface is limited by the
inaccessible communication between the SP and IdP. Thus,
this approach cannot bring an implementation closer to
a specification. The message invariant approach seems to
be promising, but it has the huge disadvantage that the
communication between the SP and the IdP is not part of
the evaluation. In addition, not all messages sent through the
browser can be manipulated. This disables the evaluation of,
for example, Issuer Confusion attack.

To the best of our knowledge, the attacker 1dP approach
is the best way to analyze implementation flaws in SSO
since it offers great flexibility, full control over all phases
and messages and can be used as a basis for an automated
analysis.

Q3: How can an implementation get closer to a speci-
fication? Before we thought about applying an automatic
testing approach, we did a manual analysis with only a
few libraries. One surprising result was, even very simple
(not to say stupid) implementations issues were made. The
best example for this are Replay attacks, which are clearly

addressed by the OpenID Connect specification, but despite
this fact, we could find them in a variety of implementations.

If we want to bring an implementation closer to a
specification, we need to validate if the implementation be-
haves correctly in exceptional scenarios. This is commonly
known as compliance testing and is a part of every serious
software development. However, when it comes to security,
these tests are missing. This may have different reasons, for
example, that developers are not aware of attacks, or they
do not understand the importance of a verification step in
a specification (“Why should one check the recipient of a
token?”).

5. Single-Phase Attacks

We executed an extensive research on different SSO
protocols and known attacks. By this means, we categorize
attacks on SSO into Single-Phase Attacks and Cross-Phase
Attacks (cf. Section 6). Most known attacks on SSO abuse
an insufficient or missing verification step on the SSO token
or one of the security relevant parameters. If this step
appears at one single point, for example, at the SP receiving
the token in Phase 3, we talk about Single-Phase Attacks.
The identification of such vulnerabilities is relatively easy,
because a Single-Phase Attack can be conducted by only
manipulating at most one message in one phase of the SSO
protocol.

In the following, we systematically analyze problems
that can occur if such a verification step is not implemented
properly and map them precisely on the OpenID Connect
protocol.

5.1. Class I Attack: ID Spoofing

The IDS attack targets the Identity related information
(Class I) in the SSO token and belongs to Cat B. The idea
of IDS is that the attacker starts a login attempt on the SP
using his attacker IdP. The attacker IdP then generates an
SSO token for an identity managed by another honest IdP,
for example, by Google, but signs it with its own key. If this
SSO token is accepted by the SP, the attacker is logged in
and has access to accounts managed by other honest IdPs.

In OpenID Connect, the identity of an End-User is
represented by the combination of two parameters: (1.) sub
defining the identity of the authenticated End-User on the
IdP. (2.) iss defining the issuer of the token. Usually this is



the URL of the IdP. Here, the attacker can try two different
attacks. First, he can change the sub value to the victim’s
one. Second, he can change both, sub and iss, to the victims’
ones using his attacker IdP. If applicable the impact of the
attack is devastating since the attacker can login on every
account on the SP (Cat B).

As a countermeasure for IDS, the SP must verify that
the attacker IdP is not allowed to issue tokens managed
by another IdP. This can be implemented by checking the
iss value and verifying the signature with the key material
corresponding to this iss.

The concept of this attack has already been described
in 2016 on OpenID [19, claimed_id, identity, email
parameter], and Browserld [9].

5.2. Class II Attack: Wrong Recipient

The idea of the Wrong Recipient attack is that an at-
tacker acting as a malicious SP receives SSO tokens from
different users. Behind the scenes he tries to redeem these
tokens on other SPs and thus get unauthorized access on
different accounts.

This attack is feasible since an IdP is used by multiple
SPs and issues tokens for all of them. Every issued SSO
token must only be consumed by a specified SP. Therefore,
the SP must verify the Recipient information (Class II). The
Wrong Recipient attack belongs to Cat .A.

In OpenID Connect the parameter specifying the recipi-
ent of the token is the aud parameter. It contains the unique
identifier of the SP (client_id). Once the SP receives an
ID Token (id_token) it must verify that the aud parameter
corresponds to its own client_id to counter the Wrong
Recipient attack.

The concept of this attack is well-known and has already
been applied to SAML [13, 18, Audience/ Recipient
element], to OpenID [19, return_to parameter], and to
OAuth [6, 32, redirect_uri parameter].

5.3. Class III Attack: Replay

Replay attacks circumvent the one-time use require-
ments and the time restrictions of an SSO token. In the most
devastating scenario an End-User, for example, a former
employee, has access to an SP for infinite amount of time.

Replay attacks are possible if Freshness parameters
(Class III) are not checked properly and belong to Cat A.
Such limitation can be based on timestamps defining a time-
slot for the validity of the SSO token. A more restrictive
option of single use are nonces. In OpenlD Connect the
relevant parameters are iat (issued at), exp (expired) and
nonce.

Replay attacks have been applied to various SSO pro-
tocols, for example, OpenID [33], Facebook Connect [41]
and SAML [18].

5.4. Class IV Attack: Signature Bypass

SSO protocols use cryptographic operations to protect
the integrity of the SSO token or at least parts of it.?

Signature Bypass attacks evade this integrity protection
and enable the modification of any content within the SSO
token. Generally spoken, if a Signature Bypass is possible
all previous described Single-Phase Attacks are applicable
since (1.) any identity of an End-User can be inserted,
(2.) any audience can be stated, (3.) all timestamps and
nonces can be adjusted.

The signature value itself, but also all relevant infor-
mation to verify the signature* belong to the Signature
information data (Class IV). Signature Bypasses are Cat B
attacks and target these parameters.

Basically, there are three different types of Signature By-
pass attacks: (1.) Disabling signature verification by remov-
ing all signature information completely [29]. (2.) Enforcing
the usage of wrong keys. This was described on SAML [18]
and applied on OpenID [19]. (3.) Changing content without
invalidating the signature. A typical example for this is XML
Signature Wrapping (XSW) [29, 18], but other scenarios
have been successfully applied on Facebook Connect [41]
and OpenlD [37].

An SSO token in OpenlD Connect has several param-
eters belonging to Class IV: The signature value itself is
transferred in the JSON Web Token (JWT). The JWT header
contains a parameter alg. By setting its value to none, the
signature verification could be disabled [20]. According to
the OpenID Connect specification, none is not allowed if
the token is transferred via the browser of the End-User,
but multiple implementations missed this check. The JWT
header can optionally contain further parameters such as the
key id (kid), which is used to identify the key to be used
for the signature. If an attacker can point to its own key,
the wrong (untrusted) key is used and he can sign arbitrary
tokens containing arbitrary identities.

To prevent such attacks, an SP must (1.) blacklist all
weak, broken, and thus insecure cryptographic algorithms,
for example, the none algorithm. (2.) ensure that the correct
key material is loaded. This can be done by verifying the
signature with the key material corresponding to the iss in
the id_token. (3.) verify that all parameters used for the
authentication within the SSO token are protected by the
signature.

5.5. Q1: Does the specification address the existing
threats?

The short answer to this question is yes. Single-Phase
Attacks are well studied and our investigation revealed that
the OpenID Connect specification addresses all attacks de-
scribed in this section. Additionally, it presents examples to
clarify the verification steps, which have to be implemented.

3. E.g. in SAML. The XML-Signature protects the Assertion element
in most cases, but not the XML root element Response.
4. E.g., the used algorithm, certificate information, etc.
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Figure 5: IdP Confusion Cross-Phase Attack: Logical flaw in the OpenID Connect specification.

Unfortunately, our evaluation revealed multiple gaps in
the existing implementations ignoring all or many of the
required verification steps leading to broken authentication.
The main reason for ignoring security relevant checks seems
to be that functionality (features) comes before security.
Thus, developers concentrate on working implementations
and often forget to implement all needed verification steps.
Developers are also not aware how critical one check could
be and what its impact is regarding the security of the system
if this verification step is skipped.

6. Cross-Phase Attacks

A Single-Phase Attack can be conducted by only ma-
nipulating at most one message in one phase of the SSO
protocol. In contrast to this, Cross-Phase Attacks manip-
ulate multiple messages in different phases. This concept
introduces more complex attacks, which are barely studied.

In general, Cross-Phase Attacks abuse the lack of a bind-
ing between two or more protocol phases. By this means,
the attacker can skip or bypass an important verification step
leading to broken End-User authentication.

While the concept of Cross-Phase Attacks can be applied
to all SSO protocols (and already was, e.g., to OpenlD
in [19]), we only concentrate on OpenID Connect in this
section, because this kind of attacks highly depend on the
protocol structure and the according messages.

In this section, we first show how the Discovery phase
influences the OpenID Connect protocol flow. Based on this
knowledge we developed two attacks — IdP Confusion and
Malicious Endpoints — abusing a flaw in the current OpenID
Connect specification. Our third attack — Issuer Confusion
— makes use of an implementation flaw. As a result of these
Cross-Phase Attacks, the attacker is logged in on an SP in
the victim’s account.

Discovery phase in OpenID Connect. The attacks de-
scribed in this section depend on the Discovery phase.

Thus, we briefly introduce the relevant messages. Figure 6
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Figure 6: The OpenID Connect Discovery phase influences
all other phases.

shows how the information retrieved during the Discovery
phase influences the OpenID Connect phases. We here do
not go into detail, but for this paper, message 1.1.4 is
most important. This message returns different so-called
endpoints. Each endpoint is a URL called by the SP during
the different phases. For example, the Dynamic Registration
Endpoint (regEndp) defines where an SP starts the Dynamic
Registration. 75% of the evaluated libraries support this
feature.

6.1. Specification Flaw: IdP Confusion

IdP Confusion is a novel Cat A attack on OpenlD
Connect, which abuses a lack in the current specification: the
connection between Phase 2 (the End-User authentication
on the IdP) and Phase 3 (the redemption of the received
code) is missing. More precisely, the SP receives a code
from the victim by the end of Phase 2 but, due to the flaw
in the specification, it is unable to determine to which IdP
the code belongs to. Because the attacker has modified an
important step in Phase 2, the SP sends wrongly the code



(plus client_id and client_secret) to the attacker IdP,
which can use it for its own purposes.

Requirements. We assume that the SP allows the usage
of custom IdPs. Additionally, we assume that during the
registration the SP receives the same client_id from the
attacker IdP as on the honest IdP. In other words, the SP has
the same client_id on two different IdPs, which is allowed
according to the specification.

Execution. Figure 5 shows the attack:

» In the first step the victim clicks on a malicious link or
visits an attacker controlled website. This click automat-
ically manages to start a login attempt on the SP with
bob@attackerldP.com.

» If the SP supports Discovery, metadata is retrieved.

» In Step 2.1 the SP redirects the End-User to the autho-
rization endpoint of the attacker IdP.

» In Step 2.2 the attacker IdP redirects the End-User to
the honest IdP. Additionally, it replaces the nonce pa-
rameter. This manipulation is necessary to successfully
impersonate the victim on the SP.

Please note that all steps until now do not require any

interaction of the End-User and are transparent for him.

Thus, he is not able to detect the attack.

» In Step 2.3 the End-User must authenticate to the IdP.
In case that he is already authenticated, this step will be
skipped. This step is the only one, in which it is possible
for the victim to detect the attack, for instance, it might
seem suspicious for the victim to get an authentication
pop-up. If the user is already authenticated on the honest
IdP, this step is usually transparent for the End-User.

» The IdP generates a valid code and returns it together
with the state parameter back to the SP.

» The SP still believes that it is communicating with the
attacker IdP due to Step 1.2. For this reason, it redeems
the received code on the attacker IdP and additionally
sends its client_id and client_secret.

» As a result, the attacker has a valid code, which he can
then redeem through his browser on the SP.

The attacker now starts his authentication on the SP and

sends the stolen code to it. The SP redeems the code

on the honest IdP and logs the attacker into the victim’s
account. We describe the countermeasure for this attack in

Section 6.4.

6.2. Malicious Endpoints Attacks

The Malicious Endpoints Attack is a novel attack on
OpenlD Connect, which abuses a lack in the current specifi-
cation: the connection between Phase 1 (the Discovery) and
Phase 3 (the redemption of the received code) is missing.
Similar to IdP Confusion the idea is to confuse and enforce
the SP to send a valid code together with the SPs client_id
and client_secret to a URL controlled by the attacker. More
precisely, the SP downloads in Phase 1 maliciously crafted
metadata from the attacker IdP, enforcing the SP to use the
honest IdP during Phase 2 for the End-User authentication,
but to redeem the rceived tokens on the attacker IdP in Phase
3.

In addition, we extended Malicious Endpoints Attack to
Server Side Request Forgery (SSRF) and Denial-of-Service
(DoS) attacks.

6.2.1. Broken End-User Authentication. This Cat A at-
tack manipulates the information in the Discovery and Dy-
namic Registration Phases in such a way that the attacker
gains access to sensitive information. The attacker (1.) pur-
sues the theft of the credentials between the honest IdP and
the honest SP and (2.) steals a valid code authorizing the
SP to access End-User’s resources on the honest IdP.

Requirements. We assume that the End-User (victim) has
an active account on the SP and he additionally has an
account on the honest IdP. In addition, the SP supports the
Discovery.

Execution. In the following, we describe the attack protocol
flow, which we depicted in Figure 7.

Phase 1.1 - Injecting malicious endpoints Similarly to
the IdP Confusion attack, the victim is lured to login with
bob@attackerldP.com on the SP Consequentially, the SP
starts a discovery phase with the attacker IdP, which re-
sponds with the values shown in Listing 1 to initiate the
actual attack. This differs to the IdP Confusion attack, where
the attacker IdP does not manipulate this message.

issuer: https://attackerIdP.com

regEndp: https://honestIdP.com/register
authEndp: https://login.honestIdP.com/
tokenEndp: https://attackerIdP.com

(S OV SR

userInfoEndp: https://attackerIdP.com

Listing 1: Endpoints returned by the attacker IdP

Phase 1.2 — Dynamic Registration. In the next step, the
SP accesses regEndp for the Dynamic Registration. It sends
a registration request to https://honestldP.com/register and
receives a client_id and client_secret.

Note: The SP automatically starts the Dynamic Regis-
tration, even if it is already registered on the honest IdP.
The reason for this behavior is that the SP believes that
http://attackerldP.com is the responsible IdP, since it is
not known from previous authentication procedures. Thus,
http://attackerIdP.com is a new IdP for the SP and it starts
the registration procedure.

Phase 2 — End-User Authentication and Authorization.
In the next phase, the SP redirects the End-User to Autho-
rization Endpoint (authEndp), https://login.honestldP.com/,
where the End-User must authenticate himself and authorize
the SP. The End-User is not able to detect any abnormalities
in the protocol flow: Phase 1.1 and Phase 1.2 cannot be
observed by the End-User, and in Phase 2 the End-User will
be prompted to authenticate to the honest IdP and authorize
the honest SP (he trusts both). Thus, the End-User authorizes
the SP and the IdP generates the code, which is sent to the
SP.

Note: Phase 2 exactly follows the original OpenID Con-
nect protocol flow — there are no parameter manipulations,
no redirects to malicious websites and no observation of
the network traffic between the End-User, the honest IdP
and the SP. Thus, the attack started at the beginning of the
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Figure 7: Malicious Endpoints attack: by manipulating the Discovery, the attacker steals the code.

protocol flow can be neither detected nor prevented by any
of the participants at this point.

Phase 3 — The Theft. Now, the SP redeems the received
code from the previous phase: It sends the code together
with the corresponding SP’s credentials received during the
Dynamic Registration (client_id/client_secret) to the
real Token Endpoint (tokenEndp).

Attack Summary. The attacker receives a valid code
and client_id/client_secret. Thus, he is authorized
to access End-User’s resources on the IdP, retrieve a valid
id_token, and can impersonate the SP.

6.2.2. Server Side Request Forgery. A Server Side Re-
quest Forgery (SSRF) attack describes the ability of an
attacker to create requests from a vulnerable web application
to the application’s Intranet and the Internet. Usually, SSRF
is used to attack internal services placed behind a firewall
and not accessible from Internet.

SSRF attacks on OpenID Connect can be conducted
by configuring URLs pointing to other services in a local
area network (LAN, e.g. http://192.168.0.1/shutdown) in the
Discovery information (cf. Listing 1).

6.2.3. Denial-of-Service Attacks. By applying Denial-of-
Service (DoS) attacks the attacker allocates resources on a
SP and negatively affects its workflow. Such resources are
CPU usage, network traffic or memory. The attack can target
one or multiple of these resources during the execution of
DoS attack.

DoS attacks in OpenID Connect can be easily executed
if the attacker IdP uses endpoints containing large files (e.g.,
public Linux DVD images or video files). The SP then starts
a GET request on these endpoints and downloads the file,
which takes lot of time and consumes memory

6.3. Malicious Endpoints Attack, IdP Confusion,
and IdP Mix-Up

On a quick peek, IdP Confusion and IdP Mix-Up look
very similar, but the following differences must be men-

tioned:

» The IdP confusion attacker works in the web attacker
model. The initial version of the IdP Mix-Up requires a
network attacker [11, v2], the SP and the IdP. Conse-
quentially and after reporting both attacks, the authors
of the IdP Mix-Up attack optimized their attack to the
web attacker model [11, v3].

» The main goal of the IdP Mix-Up is to compro-
mise the OAuth flow by revealing a valid code or
access_token. These can be used to get unauthorized
access to restricted resources.

The main goal of the IdP Confusion attack is the imper-
sonation of the victim on the SP. It requires the manip-
ulation of more parameters due to the validation of the
id_token, for example, state, nonce and client_id.

» IdP Mix-Up is not able to get a valid access token in

code flow, but the IdP Confusion does, [11, Page 35].

6.4. Fixing the OpenID Connect Specification

After discovering the IdP Confusion and Malicious End-
points Attacks, we promptly contacted the OpenID Connect
working group in October 2014. Unfortunately, they did
not respond and even a second and third attempt failed.
In November 2015, we were surprisingly contacted by the
IETF OAuth working group, because our attacks could be
applied to the OAuth protocol as well (which was a parallel
work of a different research group [11]).

Result: Specification Change. We were invited to a special
security meeting in which we discussed different mitigation
techniques and helped them to create an update for the
OAuth as well as the OpenlD Connect specification [17].

In general, the reason for the authentication issues is the
missing connection across all phases leading to confusion
on the SP side. To mitigate the attacks a parameter linking
the phases was added. In Phase 2, by adding the issuer
parameter in addition to the code parameter (see Step 2.4
in Figure 5) the SP knows to which IdP the code must be
sent in Phase 3.



Summarized, the issuer parameter must be provided
in (1.) Phase 1 during the Discovery, (2.) Phase 2 as a
mitigation against the reported Cross-Phase Attacks, and
(3.) Phase 3 within the id_token. Thus, the Cross-Phase
Attack can be detected and the leackage of valid SSO tokens
can be prevented on the SP side.

6.5. Implementation Flaw: Issuer Confusion

Issuer Confusion is a Cat B attack and depicted in
Figure 8. The idea of Issuer Confusion is to confuse the SP
to successfully accept an id_token issued by the attacker
IdP, while believing that it was issued by an honest IdP.
The main idea is related to the IDS attack — an id_token
issued and signed by attacker IdP in the name of the honest
IdP is successfully verified on the SP.

But, in comparison to IDS the Issuer Confusion abuses
a missing verification step in Phase 1 to break the entire
security even if the verification of the SSO token in Phase 3
is implemented correctly. In Section 5.1, we showed the IDS
attack abusing the skipped verification of the iss parameter.
Consequentially, the question arises how this verification
step can be implemented correctly. In other words, how can
the SP verify that the iss within the SSO token really belongs
to the IdP that has generated the token. According to the
specification: “The Issuer Identifier for the OpenID Provider
(which is typically obtained during Discovery) MUST ex-
actly match the value of the iss (issuer) Claim.” [34]. This
means, the correct verification of the SSO token in Phase 3
depends on parameters exchanged in Phase 1.

Requirements. The attack assumes an SP allowing the
usage of custom IdPs: the attacker IdP.

Execution. The attack proceeds as depicted in Figure 8:
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Figure 8: Issuer Confusion Cross-Phase Attack.

» The attacker starts the login on the SP.

» In Step 1.2 the SP discovers the IdP — in our example
https://attackerIdP.com — and retrieves the identity of the
IdP, public keys and important URLs. Here, the attacker
IdP returns the parameter issuer: https://honestldP.com
(instead of https://attackerIldP.com).

» Phase 2 is not depicted in Figure 8 since no manipula-
tions or any attack takes place here.

» In Phase 3, Step 3.2, the SP receives an SSO token
(called id_token in OpenlD Connect) and verifies it.
The id_token contains once more the value issuer:
https://honestldP.com, which matches the value of Step
1.2. If the validation is successful, the attacker gets
access to the victim’s account on the SP.

In summary, the attacker has to manipulate the issuer
parameter in two different protocol phases — we have a
Cross-Phase Attack. This attack abuses an implementation
flaw: the SP must verify that the returned issuer parameter
matches to the IdP. To fix it, the SP must verify that
the issuer returned in Step 1.2 matches the called URL
(according to the specification).

A similar attack was applied to OpenID [19] by sending
manipulated XRDS/HTML discovery files.

6.6. Q1 - Does the Specification Address the Exist-
ing Threats?

In comparison to Single-Phase Attacks, Q1 cannot be
answered clearly for Cross-Phase Attacks. The specification
addresses the Issuer Confusion attack, but all necessary
verification steps are distributed over the whole specification
and not documented at one central place. It is thus hard for
a developer to see the relation between all verification steps.

Another issue is that Cross-Phase Attacks are barely
studied and could up to now only be found in, for example,
OpenlD [19] and OAuth [11].

7. PrOfESSOS: Analyzing OpenID Connect
with Attacker IdPs

To the best of our knowledge, PrOfESSOS is the first au-
tomated EaaS security tool for practically analyzing OpenID
Connect implementations. It is the first tool capable to eval-
uate the high complex Cross-Phase Attacks, instead of only
detecting, for example, simple Replay attacks (Single-Phase
Attacks). In this section we describe the main challenges
implementing PrOfESSOS. We then describe its design,
architecture, and automated workflow.

7.1. Challenges in Analyzing OpenID Connect

Analyzing OpenID Connect by using an attacker IdP
has many novel challenges to be addressed in comparison
to previous work.

Complexity. OpenID Connect is by far more complex than,
for example, OpenID and Browserld. This is reasoned by
the following properties:

(1.) OpenID Connect supports different protocol flows
leading to significant differences in the messages exchanged
between the entities. In OpenID Connect, there are three
different main flows: code, implicit and hybrid. All flows
expect different parameters and messages. This increases
the necessarily depth of analysis. In the implicit flow, the
id_token is validated by the End-User itself. The SP there-
fore sends, for example, JavaScript code to the End-User’s
browser. In the other flows, the id_token is validated on
the SP using server code (PHP, Java, ...). Thus, there are
different implementations on a single SP, which have to be
separately validated.

(2.) OpenID Connect defines different SP types: web
applications, mobile apps and native applications. Each cat-
egory requires different flows and messages. Even more, for



each SP capability different security considerations have to
be made. For example, by using OpenID Connect on a web
application an attacker cannot see the entire communication:
the communication between the web application and the
IdP is hidden. In contrast to that, the attacker has full
access to a mobile device: the communication between an
installed app and the IdP can be easily observed and even
manipulated, for example, by using an HTTP-Proxy.’ In
OpenID and Browserld, only web applications are supported
and evaluated with respect to the security.

(3.) OpenID Connect defines a more powerful Discovery
phase which influences all other phases, especially the token
validation phase. A Discovery is also supported in OpenlD
and Browserld, but therein, it simply defines the URL of
the IdP. This reduces the potential for attacks.

Back-channel Communication. In the code and hybrid
flow, the SP and the IdP exchange multiple messages includ-
ing the SP authentication on the IdP and the id_token and
access_token. In other words, multiple security related
messages will be sent. A huge restriction for an attacker
is that it is not possible to observe or manipulate this
communication. Thus, he is not able to access the id_token
and manipulate it, which automatically limits the attack sur-
face. To bypass this restriction, we found novel attacks (IdP
Confusion, Malicious Endpoints) leaking the SP credentials
and a valid token to an attacker. In comparison to other SSO
protocols there is no such back-channel communication and
thus such an analysis does not exist.

Using Attacker IdPs. Some SPs provide authentication
possibilities only with a limited range of IdPs, for exam-
ple Google, Facebook, Twitter or PayPal. Thus, a security
evaluation using an attacker IdP is possible if the adminis-
trator manually configures the attacker IdP. The application
of an attacker IdP can be additionally enforced in some
scenarios by the HTTPoxy [7] vulnerability, or by setting
specific HTTP GET parameters in a request (e.g., changing
idp=google.com parameter). In OpenID and Browserld
this problem is less complex since the Discovery and Dy-
namic Registration are part of the core specification. Thus,
by implementing these protocols, the SP automatically sup-
ports the usage of attacker IdPs.

7.2. Implementation Challenges

In addition to general, protocol related challenges, we
had to cover different implementation challenges. The first
challenge is to cover all flows and all SPs like web, mobile
and native applications. To be platform independent, we
decided to implement PrOfESSOS as a web service. Thus,
no installation is required and it easily allows continues inte-
gration. The second challenge is to establish a flexible meta
language for configuring the security tests. The flexibility is
needed since each attack differs from others by the following
properties:

5. Certificate  pinning can be used for protection, but it
can also be circumvented: https://eaton-works.com/2016/07/31/
reverse-engineering-and-removing-pokemon- gos-certificate- pinning/

Success Condition. Attacks can have different goals. For
example, the win condition in a Replay attack is to be
successfully logged in. For IDS, this is not enough: it is
only successful if the attacker is logged in with a specific,
that means the victim’s, identity.

Flows. Some attacks are only applicable to specific OpenlD
Connect flows. This problem does not exist in OpenID and
Browserld where only one flow exists.

Login. PrOfESSOS must be able to login on the SP. It
therefore has to find the input form, which is complicated to
detect [41]. Because of this, we first try to do so automati-
cally. If it fails, the user can provide a Selenium script.®

7.3. Architecture
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Figure 9: Test scenario when using PrOfESSOS.

A user of PrOfESSOS - the penetration tester — can
access it via its web interface.” The penetration tester there
enters the URL of the target SP and selects the to be
tested attacks. In Figure 9 we depict the architecture and
components of PrOfESSOS.

Security Test Runner (STR). PrOfESSOS is an EaaS.
As such, it is available for multiple penetration testers
simultaneously. The Security Test Runner (STR) component
is basically the executing processor of PrOfESSOS so that
multiple, parallel, running tests do not interfere with each
other. The STR navigates the attacker IdP during testing,
gets the HTTP and HTML results back, and evaluates the
attack’s success condition.

Attacker IdP. The attacker IdP is a highly configurable
IdP capable to act honestly and maliciously. The IdP gets
information from the STR about the target SP, for example,
important URLs needed to start the authentication flow (e.g.
login page URL). It needs information to verify whether the
login attempt was successful.

Honest IdP. Using only one IdP for testing implementa-
tions is quite limited. During some attacks, the attacker
IdP confuses the SP by making it to believe that it com-
municates with the honest IdP (mainly for Cross-Phase
Attacks). Unfortunately, the attacker IdP cannot observe
this communication. Thus, it is not possible to analyze the

6. http://www.seleniumhq.org/
7. Demo: https://openid.sso-security.de.



Attacks Targeted Flows Discovery Modification by the Attacker IdP Success Condition(s)
Required | Phase Message
IDS (v1) code, hybrid, implicit - Phase 3 id_token.sub = honestIdP.sub (1) Login Successful?
(2) User = honestIdP.sub?
IDS (v2) code, hybrid, implicit - Phase 3 id_token.iss = honestIdP.iss (1) Login Successful?
id_token.sub = honestIdP.sub (2) User = honestIdP.sub?
Wrong code, hybrid, implicit - Phase 3 id_token.aud = honestIdP.aud (1) Login Successful?
Recipient
Replay (vl) | code, hybrid, implicit — Phase 3 id_token.nbf = 01.01.2070 (1) Login Successful?
Replay (v2) | code, hybrid, implicit - Phase 3 id_token.exp = 01.01.1970 (1) Login Successful?
Replay (v3) | code, hybrid, implicit - Phase 3 id_token.nonce = old.nonce (1) Login Successful?
Signature code, hybrid, implicit - Phase 3 id_token.alg = "none" (1) Login Successful?
Bypass (v1)
Signature code, hybrid, implicit - Phase 3 id_token.signature = "Invalid | (1) Login Successful?
Bypass (v2) Signature"
Issuer code, hybrid, implicit yes Phase 1 discovery.issuer = (1) Login Successful?
Confusion honestIdP.iss (2) User = honestldP.sub?
Phase 3 id_token.sub = honestIdP.sub
id_token.iss = honestIdP.iss
Spec. Flaw: | code, hybrid - Phase 2 authRequest.nonce = nonce’ (1) Attacker IdP receives
1dP authRequest.redirectURL = code, client_id,
Confusion honestIdP.authEndp client_secret?
Spec. Flaw: | code, hybrid yes Phase 1 discovery.regEndp = (1) Attacker IdP receives
Malicious honestIdP.regEndp code, client_id,
Endpoints discovery.authEndp = client_secret?
honestIdP.authEndp

TABLE 1: Configuration summary of Single-Phase and Cross-Phase Attacks supported by PrOfESSOS.

exact behavior of the SP during the attacks and evaluate
the results. To solve this limitation, PrOfESSOS introduces
a second honest IdP which does not perform any attacks.
Instead, it is only used to simulate the victim’s IdP and to
observe the communication between the SP and any honest
IdP.

7.4. Automated Analysis Workflow

PrOfESSOS evaluates the target SP in three stages:
setup, configuration evaluation and attacks.

Stage 1: Setup. The penetration tester starts the SSO eval-
uation by visiting the homepage of PrOfESSOS. In the
background, the STR creates one attacker IdP and another
honest IdP instance on the fly (cf. Figure 9).

Stage 2: Configuration Evaluation. The penetration tester
enters the URL of the SP that he wants to test. PrOfESSOS
then fetches the HTML document at the URL and tries
to detect the login form. If it can automatically detect
the form, it enters the URL of the attacker IdP to start
the authentication. Otherwise, the penetration tester must
provide additional information, so that PrOfESSOS is able
to start a login attempt automatically.

Once PrOfESSOS is able to login successfully to the
SP, the next challenge has to be solved: PrOfESSOS must
detect the name of the currently logged in user. In some
cases, the username is simply printed on the website. On
more complex SPs, the penetration tester can provide a link
to a URL where this information can be found. PrOfESSOS

needs this kind of information for attacks related to the
Identity information (Class I) of the SSO token. If an attack
sends, for example, to different usernames in one token,
PrOfESSOS must decide which value is used.

Finally, PrOfESSOS starts a new login attempt, but this
time, the attacker IdP creates an invalid token (containing
a wrong signature). By this means, it tests whether a false
login state can be distinguished from a correct login. If this
test fails, PrOfESSOS aborts the SP evaluation.

Stage 3: Attacks. In this stage, the penetration tester selects
different attacks that will be executed against the target SP.
In Table 1 we summarize the configuration of all attacks
described in this paper.

PrOfESSOS uses two IdPs — an honest IdP and an
attacker IdP. The honest IdP strictly follows the OpenlD
Connect specification. It is used for monitoring the HTTP
traffic and does not apply any protocol or message ma-
nipulation. On the other side, the attacker IdP can differ
from the OpenID Connect specification. Once an attack is
started, the attacker IdP takes the attack configuration and
manipulates the specified messages. All other messages are
untouched. The attack configuration thus only specifies the
manipulations deviating from the specified protocol flow.
The configuration contains additional information about the
applicable protocol flows, required OpenID Connect features
(e.g., whether the attack requires Discovery), and success
conditions. For example, an IDS attack (see Table 1, row 1),
can be executed on all OpenID Connect flows (code, hybrid
and implicit). During the attack execution, the attacker IdP



acts according to the OpenID Connect specification until
Phase 3. Therein, the attacker IdP must manipulate the
id_token by setting the sub value to the victim’s iden-
tity. More precisely, the attacker IdP first creates a valid
id_token, then it replaces the sub value, and finally signs
the id_token. Once the id_token is sent, PrOfESSOS
observes the reaction of the SP and the according results. In
case of IDS, PrOfESSOS validates the success conditions
(1.) whether the login was successful and (2.) if the name
of the logged in user corresponds to the victim’s identity
(belonging to the honest IdP). Table 1 also depicts the more
complex Cross-Phase Attacks, such as Issuer Confusion,
by specifying manipulations in the Discovery and in the
id_token. Further attacks can be added by creating a
new configuration, which allows to potentially manipulate
every message or add new ones according to the attack’s
requirements.®

7.5. Limitations

PrOfESSOS currently supports only OpenID Connect.
Some tests can be started on OAuth SPs due to the famil-
iarities of both protocols. Protocols such as OpenlD and
SAML are not yet implemented. We consciously decided
to implement the manual configuration of PrOfESSOS (see
Stage 1). The reason for our decision are the existing
challenges documented by Zhou et al. [41]: automatically
finding the login button, captchas, invisible identity, atyp-
ical HTML elements etc. Such problems make automated
configuration and analysis very hard, error-prone, and in
case of complex attacks like Cross-Phase Attacks, they can
lead to false results. The configuration overhead by filling
out six text fields is considered feasible for a penetration
tester and developer. PrOfESSOS was not designed for
large scale studies, crawling Alexa Top websites and finding
security issues. The main goal was to improve the security
of SSO by continuously supporting developers during the
implementation of new libraries.

8. Evaluation

We selected all 12 open source libraries officially ref-
erenced on the OpenID Connect website [25].2 In addition,
11 commercial products like Amazon and MS Azure and
18 tools supporting JSON-based operations (e.g. encryption
and signing) are referenced, which we did not consider in
our evaluation.

Setup. We documented the supported features of the
SPs. Such features are: (1.) flows (code, implicit, hybrid),
(2.) cryptographic algorithms, (3.) additional features such
as Discovery and Dynamic Registration. 4 of 12 libraries
do not support a full SP functionality. Such libraries are
used as a foundation to implement an SP. Features like an
authenticated session after successful login and End-User

8. https://github.com/RUB-NDS/PrOfESSOS/blob/master/src/main/
resources/testplan/rp_test.xml
9. Note that the referenced list is growing rapidly.

profile page are not implemented. Without adding this part,
it is not possible to verify if an attack is successful or not.
Thus, we did not further consider these libraries.

We concentrated on the remaining 8. These libraries
support the usage of attacker IdP which allows us to use
PrOfESSOS for the security evaluation. Only 2 out of 8
libraries did not support Discovery and Dynamic Registra-
tion. Because of that, we manually configured them to use
PrOfESSOS. For the remaining 6, no pre-configuration and
no manual steps are required.

Amazon. PrOfESSOS can also be applied to live web-
sites. We choose Amazon Webservices for our proof-of-
concept since Amazon supports the usage of attacker IdP.
PrOfESSOS can be started by simply configuring its URL
in the configuration area. Thus, we were able to evaluate
all known attacks. Amazon is not susceptible against any of
them. Interestingly, Amazon already implemented a coun-
termeasure against the IdP Confusion attack similar to the
countermeasure proposed by IETF [17].

Q2: How secure are reference implementations? (Part
2/2). The results of our security evaluation are presented in
Table 2. 75% of the libraries were susceptible to at least
one critical implementation issue!%, for instance, one of the
Single-Phase Attacks or the Issuer Confusion attack.

Even though Single-Phase Attacks are well-known, se-
curity relevant parameters were ignored and not verified at
all. We reported all issues to the developers of the libraries
and supported them during fixing the vulnerabilities. Even
though many of the vulnerabilities exist due to skipped
checks, reporting and fixing the issues was a huge outlay
since we had to exactly explain the security issues and the
impact of the attacks. This showed us that many developers
are not aware of the risks by skipping one security check,
especially in the complex Cross-Phase Attacks.

In case of attacks abusing lacks in the specification like
IdP confusion, all implementations are vulnerable. This is an
expected result since even a correct implementation strictly
following the specification rules is still susceptible.

Automated Analysis with PrOfESSOS. Simultaneously
to our initial manual analysis, we developed PrOfESSOS
and confirmed the results of our evaluation and to verify
if the reported issues were fixed by the developers. Once
configured, the re-evaluation with PrOfESSOS requires only
few minutes.

9. Related Work

We separated existing research into two categories.

SSO protocol security. SAML: Grof3 [13], Grof} and Pfitz-
mann [14] and Armando et al. [1] analyzed a formal model
for the SAML Browser/Artifact profile and identified several
generic flaws allowing connection hijacking/replay, Man-
in-the-Middle (MitM) and HTTP referrer attacks. In 2012,
Somorovsky et al. [29] investigated the XML Signature

10. Beyond that, all the libraries were vulnerable to the specification
issues.



SPs . Single-Phase Attacks Cross-Phase Attacks
PO Custom | Dynamic
Libraries 1dP T Wron Siena-
rust ng g Issuer Specification
IDS Recipi- Replay ture
Conf. Flaws
ent Bypass
Attack Category Cat B Cat A Cat A Cat B Cat B Cat A
mod_auth_openidc Yes Yes v v v Vuln. v Vuln.
MITREid Connect Yes Yes v v v v v Vuln.
oidc-client Yes Yes Vuln Vuln. Vuln. v Vuln Vuln.
phpOIDC Yes Yes Vuln Vuln. Vuln. Vuln. Vuln Vuln.
DrupalOpenIDConnectd Yes No Vuln Vuln. Vuln. Vuln. Vuln Vuln.
pyoidc Yes Yes Vuln Vuln. Vuln. Vuln. v Vuln.
Ruby OpenIDConnect Yes Yes v v Vv v v Vuln.
Apache Oltu Yes No v v Vuln. Vuln. v Vuln.
[ Total Successful Attacks [[  8/8 [ 6/8 [ 4/8 48 1 58 [ si8 [ 38 ] 8/8 |

TABLE 2: Security analysis results of officially referenced SPs libraries. Only 2 of 8 (25%) libraries implemented all

required verification steps properly.

validation of several SAML frameworks. In 2014, Mainka
et al. [18] evaluated the SAML interfaces of cloud provider
and successfully applied different Single-Phase Attacks, for
example, Replay attacks, Token Recipient Confusion (TRC)
and XSW. None of the previous work considered an evalu-
ation via an attacker IdP.

BrowserId: In 2014 Fett et al. [9] built a formal model
of the Browserld protocol. Based on the analysis the authors
defined possible points of Single-Phase Attack and found a
IDS vulnerability by manual testing. Cross-Phase Attacks
were not considered. Since Mozilla will end the Browserld
support in 30th November 2016, further security evaluation
is not likely.

OpenID: In 2008, Newman and Lingamneni [22] created
a model checker for OpenID and identifying a session
swapping vulnerability, which enforces the victim to log in
into attacker’s account on an SP. In 2012 Sun et al. [33]
analyzed OpenID Connect in a formal analysis and identified
several existing threats such as CSRF, Man-in-the-middle
attacks and the SSL support of OpenID implementations.
Wang et al. [37] demonstrated the problems related to token
verification with different attacks targeting implementation
issues. In 2016 a comprehensive evaluation regarding the
OpenlD security was published by Mainka et al. [19]. The
authors considered for the first time an attacker IdP for
security evaluation of SSO.

OAuth: OAuth has been analyzed in different formal
models [4, 28]. Additional threats are also considered in
the OAuth Threat Model and Security Considerations [26].
In 2016, Fett et al. [12] formally analyzed OAuth parallels
and independent to our work and discovered generic flaws
that can be exploited by a network attacker. The IdP Mix-
Up attack on OAuth is similar to our IdP Confusion attack
on OpenID Connect, but our attack requires only the web
attacker model instead of an attacker controlling the net-
work. In 2012 Sun and Beznosov [32] provided a large-scale
study regarding the security of OAuth implementations,
and found serious security flaws in many of them. The

Legend. Secure/Attack fails: v'; Insecure/Attack successful: Vuln..

evaluation concentrated on classical web attacks like Cross-
Site Scripting (XSS), CSRF and TLS misconfiguration.
Further security flaws in OAuth based applications were
discovered [8, 23, 27, 41] whereby the authors concentrated
on individual attacks. In 2013 Wang et al. introduced a sys-
tematic process for identifying critical assumptions in SDKs,
which led to the identification of exploits in constructed apps
resulting in changes in the OAuth specification [38]. Chen
et al. [6] revealed in 2014 serious vulnerabilities in OAuth
applications on mobile devices caused by the developer’s
misinterpretation of the OAuth protocol.

OpenID Connect: In 2015, Wanpeng Li [39] analyzed
OpenID Connect by evaluating the security of 103 SPs
using Google as an IdP and found several vulnerabilities
like Replay attacks, Man-in-the-middle, session swapping
and XSS. Attacks like IDS and Cross-Phase Attacks were
not considered. The authors of this paper summarized their
knowledge of all existing attacks on OpenID Connect in
a technical report [21]. The document contains the attacks
described in this paper and examples contributing to a better
understanding.

Automated Penetration Testing Tools. In 2013, Bai et al.
[3] introduced AuthScan, a penetration testing tool ex-
tracting the authentication protocol automatically based on
HTTP traces and JavaScript code. The authors found secu-
rity flaws in several SSO systems like MitM attacks, Replay
attacks and Guessable tokens. More complex attacks, like
IDS or Cross-Phase Attacks were not considered. Xing et al.
[40] published InteGuard - a tool detecting the invariance
in the communication between the browser and the SP.
Another tool similar to InteGuard is BLOCK [16]. Both
tools can detect Single-Phase Attacks. However, Cross-
Phase Attacks requiring the usage of attacker IdP were not
covered by both tools. Yuchen Zhou [41] published a fully
automated tool named SSOScan for analyzing the security
of OAuth implementations and described five attacks, which
can be automatically tested by the tool. We used this work
as a basis of PrOfESSOS — a website capable to evaluate



different implementations. However, SSOScan is limited to
the analysis of Facebook SSO and cannot consider attacks
like IDS and Cross-Phase Attacks. Mainka et al. [19] pub-
lished in 2016 OpenlD Attacker - the full automated tool to
analyze OpenlD by using an attacker IdP. OpenID Attacker
is limited to OpenlID and is not available as a service.
Thus, it has to be downloaded and then configured for
each test. In 2016 Sudhodanan et al. [31] introduced an
automated tool for black box testing of Multi-Party Web
applications, including Cashier-as-a-Service, and discovered
multiple vulnerabilities. They extended the OWASP ZAP
tool and implemented seven attack patterns. However, the
implementation is not public available and the authors of
the paper excluded the usage of attacker IdP.

10. Conclusion

We showed that although the OpenID Connect specifi-
cation addresses (most) attacks or at least provides coun-
termeasures without stating attacks (Q1), implementations
often do not follow its guideline to implement it securely
(Q2). All investigated OpenID Connect libraries have critical
implementation flaws resulting in broken End-User authen-
tication. We have thus to assume that implementation flaws
will always exist since developers are not always security
experts and do not follow the specification instructions
perfectly. To tighten the gap between a specification and
an implementation, we propose PrOfESSOS, an EaaS that
automatically performs and evaluates attacks (Q3) which
we divide into Single-Phase and Cross-Phase Attacks. Since
PrOfESSOS is open source and available on Github, it can
deal as the basis for many other research projects, not only
limited to SSO, but also to other multi-party web applica-
tions, for example, Cashier-as-a-Service. In a future work,
we plan to extend PrOfESSOS to also validate IdP imple-
mentations of OpenID Connect for completeness. Based on
our experiences with SSO security with all major protocols
(SAML, OpenID, OpenlID Connect, OAuth, Browserld), we
are absolutely convinced that an approach like PrOfESSOS
is the best solution to reach the required security level,
which a critical component, like an SSO library, needs. To
reach this goal, we do not plan to start a large scale study
which will obviously reveal that implementation issues exist,
but instead, we are working with the OAuth and OpenlD
Connect working group to include PrOfESSOS in their
certification process. If big companies such as Google or
Microsoft follow this, the overall security of their SPs will
be significantly improved.
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