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Abstract

MAFTIA’s Work-package 6 is pursuing the overall goal of

“rigorously defining the basic concepts developed by MAFTIA,
and verifying results of the work on dependable middle-ware.”

In the former MAFTIA deliverable D4, we presented a general rigorous model
for the security of reactive systems. This model comprised various types of

faults (attacks) and topology as considered in MAFTIA, but was restricted
to a synchronous timing model. In this deliverable, we focus on a model-

variant for asynchronous reactive systems. This variant is highly important
for MAFTIA, since several of the major MAFTIA middle-ware-protocols are

asynchronous. To illustrate the use of the asynchronous model a proof of
secure message transmission in the asynchronous case is included. We chose

this example which delivers a similar service as the example from D4, to
illustrate the analogies as well as the differences between the two variants of

the secure reactive systems model. As in the synchronous model, we prove
a composition theorem for its asynchronous counterpart, which allows mod-

ular proofs in this model. Furthermore, we discuss how to model adaptive

corruptions in the presented models.
Finally, we discuss the relation between the proposed models and the

real world: Every model abstracts in certain ways from the real world and
makes assumptions. So do the presented models of secure reactive systems.

These abstractions are, on the one hand, necessary to enable reasoning about
protocols at all. On the other hand, they can lead to insecure systems in the

real world if they are naively implemented. Guided by the goal of secure real
world systems, we present an assessment of the model’s abstractions and

discuss the possible impact on the real world security when implementing
reactive systems which are proven secure in this model.



Contents

1 Introduction 1

2 Asynchronous Reactive Systems 3
2.1 Overview of the Asynchronous Model . . . . . . . . . . . . . . 3

2.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Asynchronous Reactive Systems . . . . . . . . . . . . . . . . . 6

2.3.1 General System Model . . . . . . . . . . . . . . . . . . 8
2.3.2 Security-specific System Model . . . . . . . . . . . . . 13

2.3.3 Simulatability . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Lemmas and Stronger Simulatability . . . . . . . . . . 17

2.4 Standard Cryptographic Systems . . . . . . . . . . . . . . . . 24
2.4.1 Static Adversaries . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Adaptive Adversaries . . . . . . . . . . . . . . . . . . . 26

2.5 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Example: Secure Message Transmission 35
3.1 Ideal System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Real System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Primitives Used . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Real System for Secure Message Transmission . . . . . 40
3.3 Public-key Encryption in a Reactive Multi-user Setting . . . . 42

3.4 Security of the Real System . . . . . . . . . . . . . . . . . . . 47
3.4.1 Rewriting the Real System . . . . . . . . . . . . . . . . 48

3.4.2 Replacing the Encryption System . . . . . . . . . . . . 50
3.4.3 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.4 Overall Proof of the Correctness of the Simulator . . . 52
3.5 Detailed Proof of Correct Simulation . . . . . . . . . . . . . . 54

3.5.1 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.2 Possible inputs and counters . . . . . . . . . . . . . . . 55
3.5.3 Send Initialization . . . . . . . . . . . . . . . . . . . . 55

3.5.4 Receive Initialization . . . . . . . . . . . . . . . . . . . 56
3.5.5 Send to Honest Party . . . . . . . . . . . . . . . . . . . 56

3.5.6 Send to Dishonest Party . . . . . . . . . . . . . . . . . 57
3.5.7 Receive from Honest Party . . . . . . . . . . . . . . . . 58

i



3.5.8 Receive from Dishonest Party . . . . . . . . . . . . . . 59
3.5.9 Final Reduction . . . . . . . . . . . . . . . . . . . . . . 59

4 Faithfully Implementing Protocols 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Model Abstractions and Impact on Real-World Security . . . . 61
4.2.1 Computation Model . . . . . . . . . . . . . . . . . . . 62

4.2.2 Communication Model . . . . . . . . . . . . . . . . . . 66
4.2.3 Model Semantics — The Notion of Runs . . . . . . . . 68

4.2.4 Additional Information-Flows in the Real-World . . . . 70
4.3 Closing the Gap: Possible Approaches . . . . . . . . . . . . . 73

4.3.1 Closing the Gap when Proving the Security of Protocols 74
4.3.2 Closing the Gap from the Implementation Side . . . . 76

5 Conclusion 78

Bibliography 80

ii



1 Introduction

The MAFTIA project systematically investigates the tolerance paradigm

for building dependable distributed systems. For this, it combines techniques
and notions from fault tolerance and various areas of security, such as intru-

sion detection and cryptographic protocols.
In the early days of security research, cryptographic protocols were de-

signed using a simple iterative process: someone proposed a protocol, some-
one else found an attack, an improved version was proposed, and so on,

until no further attacks were found. Today it is commonly accepted that
this approach gives no security guarantee. Too many simple and seemingly

secure protocols have been found flawed over the years. Moreover, typical
protocols and applications like n-party key agreement, fair contract signing,

payments or distributed trusted third parties of all kinds are just too com-
plex for this approach. Secure protocols—or more generally, secure reactive

systems, which interact with their users many times—need a proof of security
before being acceptable.

Both the cryptography and the formal-methods communities are working

on such proofs. The former aims at proofs which rigorously deal with issues
such as computational power and success probabilities of adversaries as well

as complexity-theoretic assumptions underlying most efficient cryptographic
protocols, while the latter aims at proofs in some formal proof system that

can be automatically verified or even generated. Unfortunately, both ap-
proaches have their limitations. On the one hand, current formal methods in

security cannot be applied directly to cryptographic proofs. Instead, they ab-
stract from most cryptographic details, typically following Dolev and Yao’s

approach [20], and there is no guarantee that a formally proven protocol
is actually secure if implemented with a cryptographically secure primitive

[3, 43]. On the other hand, cryptographic definitions of complex systems are
often sketchy, and even more the proofs, e.g., because every single definition

currently has to reconsider active attacks and every single proof has to be a
reduction proof to underlying assumptions.

The goal of the Work-package 6 in the MAFTIA project is to enable the

verification and assessment of the dependability achieved by protocols and
mechanisms developed in the other work-packages. To meet this goal, we

developed rigorously defined models that cover the basic concepts identified
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in Work-package 1 and try to link the approaches from cryptography and
formal-methods known so far to get the best overall results: proofs that allow

abstraction and the use of formal methods, but retain a sound cryptographic

semantics. Thus we provide a model that allows us to split reactive systems
into two layers: The lower layer is a cryptographic system whose security can

be rigorously proven using standard cryptographic arguments. To the upper
layer it provides an abstract (and typically deterministic) service that hides

all cryptographic details. Relative to this abstract service one can verify the
upper layer using existing formal methods. Since our model allows secure

composition (as shown in Section 2.5, Theorem 2.1) one can conclude that
the overall system is secure if the formally verified upper layer is put on top

of a cryptographically verified lower layer ([43] provides more motivation for
this approach).

Since the underlying synchrony assumptions have major impact on the
model’s definitions, we developed two model variants. While MAFTIA de-

liverable D4 [4] concentrates, among other things, on the model variant with
strong synchrony assumptions, Chapter 2 of the present deliverable intro-

duces the asynchronous version of the model. It makes only weak synchrony

assumptions and allows proofs for protocols with according assumptions.
Both models are highly important to the assessment and verification of MAF-

TIA’s basic protocols. Furthermore, we give a model of adaptive adversaries
which is a strictly stronger adversary model than that discussed in D4.

In Chapter 3 we illustrate the model and its differences to the synchronous
counterpart by presenting a rigorous security proof of a system for secure

message transmission which is also one of the most basic building blocks of
the MAFTIA middle-ware.

We close this deliverable in Chapter 4 with a discussion of the abstrac-
tions from the real world made in the presented models. Especially, the

abstractions’ impact on real world security of implementations in standard
runtime environments is assessed. This assessment is an important aspect,

since it calls attention to real world pitfalls which have to be avoided in or-
der to reach the overall goal of MAFTIA: secure, fault tolerant real world

systems.
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2 Asynchronous Reactive Systems

In this Chapter, we carry out our approach of linking the cryptographic

and formal-methods approaches for proving security, specifically for asyn-
chronous reactive systems. Reactive means that the system interacts with

its users many times (e.g., multiple sub-protocol executions).

2.1 Overview of the Asynchronous Model

Essentially, we model a system by sets of asynchronously communicating
probabilistic state machines, connected via buffered channels. This general

system model is presented in Section 2.3.1 and contains, in MAFTIA terms,

the synchrony and topological model.
Honest users and the adversary are explicitly represented by two arbi-

trary machines, H and A, which can interact arbitrarily. A reactive system,
Sys1, is considered at least as secure as another system, Sys2, written as

Sys1 ≥ Sys2, if whatever any adversary A1 can do to any honest user H in
Sys1, some adversary A2 can do to the same H in Sys2 essentially with the

same probability. System Sys1 is often a real system using concrete crypto-
graphic primitives, while Sys2 is an ideal system, i.e., a specification, that

does not depend on any specific cryptographic implementation details and is
not realistic (e.g., one machine instead of a distributed system) but secure by

construction. The resulting generality of the security definition is a highly
desirable property of this security model. This is in particular important

in the context of MAFTIA since the considered protocols and applications
use a wide range of cryptographic primitives and have complex and manifold

security goals.

The model is defined in Section 2.3. Section 2.4 shows how to represent
typical trust models (or adversary structures), such as static threshold models

and adaptive adversaries, with secure, authenticated and insecure channels.
Given the complexity and the size of the systems considered in MAFTIA,

it is a necessity that the specification, design and security proofs can be per-
formed in a modular manner. To support this modularity, we state and prove

in Section 2.5 a composition theorem. (Note that the possibility of a secure
composition was often implicitly but wrongly assumed in past approaches of

cryptographic modeling. Here, in contrast, we handle composition explicitly

3



and put it on firm grounds.)
For concrete specifications, we advocate two main design principles:

1. Abstract interfaces: The ideal system should provide abstract inter-

faces, hiding all cryptographic details. This keeps the specification indepen-
dent of the implementation, which is desirable when higher-layer protocols

are based on the service. For instance, in order to send messages secretly from
one user to another there is no need to ask the user to input cryptographic

keys or to output ciphertexts to him; those can be generated, exchanged and
processed completely within the system. In an implementation-independent

simulatability-based definition, it is problematic to have keys in the interface
because keys of different implementations are often distinguishable.

2. Explicit tolerable imperfections: In order to improve efficiency one
often accepts certain imperfections. For instance, a typical practical im-

plementation of secure message transmission only conceals the contents of
messages, but does not hide who communicates with whom, which would

be much more costly to implement. In a simulatability-based approach one
has to include all such tolerable imperfections in the specification, i.e., in the

ideal system. This must be done in a similar abstract way as the rest of the

specification.
In Chapter 3, we apply the model to secure message transmission. We

chose this example since it is an important type of cryptographic subsystem
for larger MAFTIA systems: Many applications use encryption and signa-

tures algorithms just for this purpose, and our definition of secure message
transmission gives a much cleaner interface to these applications than let-

ting them use the cryptographic primitives directly, potentially in insecure
ways. Another reason for choosing this example is that it is similar to the

example discussed in deliverable D4 [4] for the synchronous model and thus
it illustrates the differences between the model variants. Additional to this

illustrating example, a (more complex) multi-party key establishment ser-
vice, a further potential basic MAFTIA protocol, has been defined in this

model [46]. The corresponding protocols and related security proofs give also
the first example on how to handle adaptive corruption.

For the proof of the real system, we first prove a theorem that extends

the security of public-key encryption in multi-user settings to reactive cases,
where secret messages may also be decrypted by correct machines. This

generalizes a result from [10] and may be of independent interest. It captures
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what is often called a “standard hybrid argument” in cryptography, but was
not well-defined for the reactive case yet.

Before we go into the details of the model, we give a short overview over

the related literature and previous work in this context.

2.2 Related Literature

Several researchers pursue the goal of providing security proofs that allow
the use of formal methods, but retain a sound cryptographic semantics: In

[37, 38] the cryptographic security of specific systems is directly defined and
verified using a formal language (π-calculus), but without providing abstrac-

tions (their specifications essentially comprise the actual protocols including

all cryptographic details) and without tool support (as even the specifica-
tions involve ad-hoc notations, e.g., for generating random primes). [40]

has quite a similar motivation to our paper. However, cryptographic sys-
tems are restricted to the usual equational specifications (following [20]) and

the semantics is not probabilistic. Hence, the abstraction from cryptogra-
phy is no more faithful than in other papers on formal methods in security.

Moreover, only passive adversaries are considered and only one class of users
(“environment”). The author actually remarks that the model of what the

adversary learns from the environment is not yet general, and that general
theorems for the abstraction from probabilism would be useful. Our model

solves both these problems. In [3] it is shown that a slight variation of the
standard Dolev-Yao abstraction [20] is cryptographically faithful specifically

for symmetric encryption, but only under passive attacks.
Our security definitions follow the simulatability approach of modern

cryptography. This was first used in secure function evaluation [9, 25, 41, 54],

and subsequently also for specific reactive problems (e.g., [11, 19, 21]) and
for the construction of generic solutions for large classes of reactive prob-

lems [24, 23, 29] (usually yielding inefficient solutions and assuming that all
parties take part in all sub-protocols). Somewhat general models for reac-

tive systems have been proposed (after some earlier sketches, in particular
in [24, 47, 17]) in [37, 38, 29, 43, 48]. The last three are synchronous, while

the first two are in a somewhat simplified timing model with uniform choice
among certain classes of unrelated possible events. Among the reactive mod-

els, the only composition theorem so far is ours in [48], i.e., we present the
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first asynchronous one in the current paper. Our model is based on [48] ex-
cept for the timing aspects. Those can be seen as extensions of [53, 16, 38];

differences are motivated in Section 2.3.

Independently and concurrently to this work, Ran Canetti has developed
a model that roughly corresponds to standard cryptographic systems as dis-

cussed in Section 2.4.2, with polynomial-time users and adversaries, and au-
thenticated channels only [18]. The model is less rigorously defined than the

model presented here. Security is defined in terms of universal simulatability
only (see Definition 2.16), which allows to securely compose a polynomial

number of identical systems.
Several specifications for secure message transmissions as examples of

general models have been proposed. The specification in [37] is formal but
specific for one concrete protocol and comprises all cryptographic details,

i.e., it is not abstract and its intuitive correctness is difficult to judge. Our
concrete specification is quite close to that in [40], but we had to introduce

the tolerable imperfections. Actually, the implementation in [40] has the
same imperfections. They do not show up in the proof because the definition

of “a system implements another one,” used in place of our “as secure as”

is weaker: Secrecy is defined as a property that the adversary cannot learn
certain messages, but here the information leaked is not entire messages. [2, 1]

stress the importance of a secure message transmission (channel) abstraction,
but their focus is different from ours: They consider formal calculi that

immediately contain secure channels as a primitive, thus the specification
comes in indirectly in the semantics. Canetti’s parallel work also contains a

similar example; however, he assumes underlying authentic channels already,
which simplifies both the specification (fewer tolerable imperfections) and

the implementation. His technique of proving a system for only one recipient
and applying the composition theorem does not apply in our case because

we use common signature keys in all executions.

2.3 Asynchronous Reactive Systems

In this section, we present our model for secure reactive systems in an

asynchronous network. Subsection 2.3.1 defines the general system model,
i.e., machines and executions of collections of machines. Subsection 2.3.2

defines the specific system model, i.e., systems with users and adversaries.
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Subsection 2.3.3 defines simulatability, i.e., our basic notion of security. Fi-
nally, Subsection 2.3.4 presents important lemmas for this model.

In the first two subsections, the primary differences to the synchronous

model as presented in the MAFTIA deliverable D4 [4] will become evident.
Naturally, these differences have also some strong implications on the follow-

ing sections. However, note that despite these differences the two models are
closely related and it can be shown that the synchronous model is a special

case of the asynchronous model [8].
Our machine model is probabilistic state-transition machines, similar to

probabilistic I/O automata as sketched in [39] (more details in [53]). A dis-
tinguishing feature in our model of asynchronous executions is distributed

scheduling. The standard way to fix the order of events in an asynchronous
system of probabilistic I/O automata is a probabilistic scheduler that has full

information about the system [53]. The “standard” understanding in cryp-
tology (closest to a rigorous definition in [16]) is that the adversary schedules

everything, but only with realistic information. This corresponds to making
a certain subclass of schedulers explicit for the model from [53]. However, if

one splits a machine into local sub-machines, or defines intermediate systems

for the purposes of proof only (as we do in Chapter 3), this may introduce
many schedules that do not correspond to a schedule of the original sys-

tem and, therefore, just complicate the proofs. Our solution is a distributed
definition of scheduling which allows machines that have been scheduled to

schedule certain (statically fixed) other machines themselves. This does not
weaken the adversary’s power in real systems, because our definition of stan-

dard cryptographic systems in Section 2.4 will not use this feature except for
scheduling local sub-machines.

Similar problems with purely adversarial scheduling were already noted
in [38]. They distinguish secure channels and schedule all those with uni-

form probability before adversary-chosen events. However, that introduces
a certain amount of global synchrony. Furthermore, we do not require “lo-

cal” scheduling for all secure channels; they may be blindly scheduled by the
adversary (i.e., without even seeing if there are messages on the channel).

For instance, this models cases where the adversary has a global influence on

relative network speed.

7



2.3.1 General System Model

Let a finite alphabet Σ be given, let Σ∗ denote the strings over it, ε the

empty string, and Σ+ := Σ∗ \ {ε}. We assume that !, ?,↔ ,/ 6∈ Σ. For s ∈ Σ∗

and l ∈
�

0 , let sdl denote the l-bit prefix of s.

Definition 2.1 (Ports)

a) A port p is a triple (n, l, d) ∈ Σ+× {ε, ↔, /}×{!, ?}. We call name(p) :=
n its name, label(p) := l its label, and dir(p) := d its direction. We

can write the triples as concatenations without ambiguity.

b) We call a port (n, l, d) an in-port or out-port iff d = ? or d = !,

respectively. We call it a simple port, buffer port or clock port iff
l = ε,↔, or /, respectively. For a set P of ports let out(P) := {p ∈
P | dir(p) = !} and in(P) := {p ∈ P | dir(p) = ?}. We use the same
notation for sequences of ports, retaining the order.

c) By pc, the ( low-level) complement of a port p, we denote the port
with which it connects according to Figure 2.1, i.e., n/!c := n/?, n!c :=

n↔?, n↔!c := n?, and vice versa. Accordingly we define the (low-level)
complement of a set or sequence of ports.

d) For a simple port p, we define its high-level complement pC as the port
connected to p without counting the buffer, i.e., n?C := n! and vice

versa.

3

Our machine model is an automaton model with Turing machines as a
possible implementation. To allow time bounds independent of the envi-

ronment, we provide bounds on the length of the considered inputs. We
are not using Turing machines as the primary model, in contrast to related

cryptographic literature, to support abstraction in the specifications.

Definition 2.2 (Machines) A machine is a tuple

M = (nameM,PortsM, StatesM, δM, lM, IniM,FinM)

of a name nameM ∈ Σ+, a finite sequence PortsM of ports, a set StatesM ⊆ Σ∗

of states, a probabilistic state-transition function δM, a length function lM :

8
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Figure 2.1: Ports and buffers.

StatesM → (
�
∪ {∞})|in(PortsM)|, and sets IniM,FinM ⊆ StatesM of initial

and final states. Its input set is IM := (Σ∗)|in(PortsM)|; the i-th element

of an input tuple denotes the input at the i-th in-port. Its output set is
OM := (Σ∗)|out(PortsM)|. The empty word, ε, denotes no in- or output at a

port. δM maps each pair (s, I) ∈ StatesM × IM to a finite distribution over
StatesM×OM. If s ∈ FinM or I = (ε, . . . , ε), then δM(s, I) = (s, (ε, . . . , ε)) de-

terministically. Inputs are ignored beyond the length bounds, i.e., δM(s, I) =
δM(s, IdlM(s)) for all I ∈ IM, where (IdlM(s))i := IidlM(s)i

for all i. 3

In the text, we often write “M” also for nameM.

Remark 2.1. The chosen representation makes δM independent of the port
names. This will also hold for views. Hence we can rename ports in some

proofs without changing the views. The requirement for ε-inputs means that
it does not matter if we switch a machine without inputs or not; we will also

omit such steps from the runs. This simplifies combinations below. Inputs
“masked” by a length bound 0 are treated in the same way. ◦

For computational aspects, a machine M is regarded as implemented by a
probabilistic interactive Turing machine as introduced in [27]. We need some

refinements of the model.

Definition 2.3 (Computational Realization) A probabilistic interactive Tur-

ing machine T is a probabilistic multi-tape Turing machine whose heads see
if the head of a partner machine is on the same cell of a common tape. Tapes

have a left boundary, and heads start on the left-most cell. T implements a
machine M as in Definition 2.2 if the following holds. Let iM := |in(PortsM)|.

9



We write “finite state” for a state of the finite control of T and “state” for
an element of StatesM.

a) T has a read-only tape for each in-port of M. Here the head never moves
left, nor to the right of the other head on that tape. For each out-port,

T has a write-only tape where the head never moves left of the other
head on that tape.

b) T has special finite states restartint with int ∈ P({1, . . . , iM}) for waking

up asynchronously with inputs at a certain set of ports, sleep denoting
the end of a transition, and end for termination. Here restart∅ equals

sleep, i.e., T needs no time for “empty” transitions.

c) T realizes δM(s, I) as follows for all s ∈ StatesM and I ∈ IM: Let T

start in finite state restartint where int := {i | IidlM(s)i
6= ε} 6= ∅, with

worktape content s, and with Ii on the i-th input tape from (including)
T’s head to (excluding) the other head on this tape for all i. Let s′

be the worktape content in the next finite state sleep or end, and Oi

the content of the i-th output tape from (including) the other head to

(excluding) T’s head. Then the pairs (s′, O) are distributed according
to δM(s, I), and the finite state is end iff s′ ∈ FinM.

d) The complexity of T is, unless stated otherwise, measured in terms of

the length of its initial state, i.e., the initial worktape content (often
a security parameter). In particular, polynomial-time is meant in this

sense. A machine is called weakly polynomial-time if its run-time is
polynomial in the overall length of its inputs.

3

Definition 2.4 (Simple Machines and Master Schedulers) A machine M is

simple if it has only simple ports and clock out-ports. A machine M is a
master scheduler if it has only simple ports and clock out-ports and the special

master-clock in-port clk/?. Without loss of generality, a master scheduler
makes not outputs in a transition that enters the final state. 3

Definition 2.5 (Buffers) For each name q ∈ Σ+ we define a specific ma-

chine q̃, called a buffer: It has three ports, q/?, q↔?, q↔! (clock, in, and out)
(see Figure 2.1). Its internal state is a queue over Σ+ with random access,
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initially empty. Its set of final states is empty, and all its length bounds are
infinite. For each state transition, if the input x at q↔? is non-empty, then δ�q

appends x to the queue. A non-empty input at q/? is interpreted as a number

i ∈
�

and the i-th element is retrieved (where 1 indicates the oldest one),
removed from the queue, and output at q↔!. (This might be the element just

appended.) If there are less than i elements, the output is ε. 3

Buffers are weakly polynomial-time.

Definition 2.6 (Collections)

a) For every machine M, let ports(M) denote the set of ports in PortsM,

and for a set M̂ of machines, let ports(M̂ ) :=
⋃

M∈M̂ PortsM.

b) A collection Ĉ is a finite set of machines with pairwise different ma-
chine names, disjoint sets of ports, and where all machines are simple,

master schedulers, or buffers. It is called (weakly) polynomial-time if
all its non-buffer machines have a (weakly) polynomial-time implemen-

tation.

c) Each set of low-level complementary ports {p, pc} ⊆ ports(Ĉ ) is called

a low-level connection, and the set of them the low-level connection

graph gr(Ĉ ). By free(Ĉ ) we denote the free ports in this graph, i.e.,
ports(Ĉ ) \ ports(Ĉ )c. A set of high-level complementary simple ports

{p, pC} ⊆ ports(Ĉ ) is called a high-level connection, and the set of
them the high-level connection graph Gr(Ĉ ).

d) A collection is closed if free(Ĉ ) = {clk/?}. (Hence there is exactly one
master scheduler, identified by having the port clk/?.)

e) The completion [Ĉ ] of a collection Ĉ is the union of Ĉ and the corre-
sponding buffer for each simple or clock out-port q ∈ ports(Ĉ ).

f) If q̃, M ∈ Ĉ and q/! ∈ ports(M) then we call M the scheduler for buffer
q̃ (in Ĉ ).

3

Now we define the probability space of runs (or “executions” or “traces”)
of a closed collection.
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Definition 2.7 (Runs) Given a closed collection Ĉ with master scheduler X

and a tuple ini ∈ Ini Ĉ := ×M∈Ĉ IniM of initial states, the probability space of

runs is defined inductively by the following algorithm. It has a variable r for

the resulting run, an initially empty list, a variable MCS (“current scheduler”)
over machine names, initially MCS := X, and treats each port as a variable

over Σ∗, initialized with ε except for clk/? := 1. Probabilistic choices only
occur in Phase (1).

1. Switch current scheduler: Switch machine MCS, i.e., set (s′, O) ←
δMCS

(s, I) for its current state s and in-port values I. Then assign

ε to all in-ports of MCS.

2. Termination: If X is in a final state, the run stops. (As X made no

outputs, this only prevents repeated master clock inputs.)

3. Buffer messages: For each simple out-port p! of MCS, in their given

order, switch buffer p̃ with input p↔? := p!. Then assign ε to all these
ports p! and p↔?.

4. Clean up scheduling: If at least one clock out-port of MCS has a value 6=
ε, let q/! denote the first such port and assign ε to the others. Otherwise

let clk/? := 1 and MCS := X and go back to Phase (1).

5. Scheduled message: Switch q̃ with input q/? := q/!, set q? := q↔! and
then assign ε to all ports of q̃ and to q/!. Let MCS := M′ for the unique

machine M′ with q? ∈ ports(M′). Go back to Phase (1).

Whenever a machine (this may be a buffer) with name nameM is switched

from (s, I) to (s′, O), we add a step (nameM, s, I ′, s′, O) to the run r where
I ′ := IdlM(s), except if s is final or I ′ = (ε, . . . , ε). This gives a family of

random variables
run Ĉ = (runĈ ,ini)ini∈Ini

Ĉ
.

For a number l ∈
�
, l-step prefixes run Ĉ ,ini ,l of runs are defined in the

obvious way. For a function l : Ini Ĉ →
�
, this gives a family run Ĉ ,l =

(runĈ ,ini ,l(ini))ini∈Ini
Ĉ
. 3

The abstract assignments of the run algorithm have a natural realization
with the Turing machines from Definition 2.3, where low-level connections

12



are realized by sharing a tape, except that all clock-ports are connected to
an additional Turing machines for the cleanup.

Definition 2.8 (Views) The view of a subset M̂ of a closed collection Ĉ
in a run r is the restriction of r to M̂ , i.e., the subsequence of all steps

(name, s, I, s′, O) where name is the name of a machine M ∈ M̂ . This gives
a family of random variables

view Ĉ (M̂ ) = (view Ĉ ,ini(M̂ ))ini∈Ini
Ĉ
,

and similarly for l-step prefixes. 3

2.3.2 Security-specific System Model

Now we define specific collections for security purposes, first the system

part and then the environment, i.e., users and adversaries. Typically, a
cryptographic system is described by an intended structure, and the actual

structures are derived using a trust model, see Section 2.4. However, as a
wide range of trust models is possible, we keep the simulatability definition

independent of them.

Definition 2.9 (Structures and Systems)

a) A structure is a pair struc = (M̂ , S ) where M̂ is a collection of simple
machines called correct machines, and S ⊆ free([M̂ ]) is called specified

ports. If M̂ is clear from the context, let S̄ := free([M̂ ]) \ S. We call
forb(M̂ , S ) := ports(M̂ ) ∪ S̄ c the forbidden ports.

b) A system Sys is a set of structures. It is (weakly) polynomial-time iff
all its collections M̂ are (weakly) polynomial-time.

3

The separation of the free ports into specified ports and others is an
important feature of our particular simulatability definitions. The specified

ports are those where a certain service is guaranteed. Typical examples of in-
puts at specified ports are “send message m to id” for a message transmission

system or “pay amount x to id” for a payment system. The ports in S̄ are

13



additionally available for the adversary. The ports in forb(M̂ , S ) will there-
fore be forbidden for an honest user to have. In the simulatability definition

below, only the events at specified ports have to be simulated one by one.

This allows abstract specifications of systems with tolerable imperfections.
This will become clear with the example in Chapter 3.

Definition 2.10 (Configurations)

a) A configuration of a system Sys is a tuple conf = (M̂ , S , H, A) where
(M̂ , S ) ∈ Sys is a structure, H is a simple machine without for-

bidden ports, i.e., ports(H) ∩ forb(M̂ , S ) = ∅, and the completion
Ĉ := [M̂ ∪ {H, A}] is a closed collection with master scheduler A. The

set of configurations is written Conf(Sys).

b) The initial states of all machines in a configuration are a common se-

curity parameter k in unary representation, denoted by 1k. This means

that we consider the families of runs and views of the collection Ĉ
restricted to the subset Ini ′

Ĉ
:= {(1k)M∈Ĉ |k ∈

�
} of Ini Ĉ . We write

runconf and view conf (M̂ ) for the families run Ĉ and view Ĉ (M̂ ) restricted

to Ini ′
Ĉ
, and similar for l-step prefixes. Furthermore, we identify Ini ′

Ĉ

with
�

and thus write runconf ,k etc. for the individual random variables.

c) The set of configurations of Sys with polynomial-time user H and ad-

versary A is called Confpoly(Sys). “poly” is omitted if it is clear from
the context.

3

2.3.3 Simulatability

We now define the security of a system Sys1 relative to another system

Sys2. Typically, we only want to compare each structure of Sys1 with cer-
tain corresponding structures in Sys2. What “corresponding” means can be

specified by a mapping f ; but we require that only structures with the same
set of specified ports correspond.

Definition 2.11 (Valid Mappings, Suitable Configurations) Let Sys 1 and
Sys2 be two systems.
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a) A valid mapping for them is a function f : Sys1 → P(Sys2) with
S1 = S2 for all structures (M̂1, S1) and (M̂2, S2) ∈ f(M̂1, S1).

b) If Sys2 contains exactly one structure (M̂2, S2) with S2 = S1 for each

(M̂1, S1) ∈ Sys1, the canonical mapping f is defined by f(M̂1, S1) =
{(M̂2, S2)}.

c) Given f , the set Conff(Sys1) of suitable configurations contains
those configurations (M̂1, S , H, A1) ∈ Conf(Sys1) where ports(H) ∩
forb(M̂2, S ) = ∅ for all (M̂2, S ) ∈ f(M̂1, S ).

3

Remark 2.2. In the synchronous model in [48], we allow more general users
and valid mappings. The stronger requirements here simplify the presenta-

tion and are sufficient for all cryptographic examples we considered. See [44]
for non-cryptographic examples with S1 6= S2. ◦

An example of a system where different structures have the same specified
ports, and thus a non-canonical mapping is needed, is a protocol with a semi-

trusted third-party machine T which needs no user interface (because its
behavior is fully prescribed by the protocol) and where different properties

can be achieved depending on whether T is correct or not.
Simulatability is based on indistinguishability of views, hence we repeat

the definition of indistinguishability, essentially from [55].

Definition 2.12 (Negligible Functions) A function g :
�
→

�
≥0 is negligi-

ble, written g(k) ≤ 1/poly(k), if for all positive polynomials Q, ∃k0∀k ≥ k0 :
g(k) ≤ 1/Q(k). The class of negligible functions is written NEGL. 3

Definition 2.13 (Indistinguishability) Two families (vark)k∈ � and (var′k)k∈ �
of random variables (or probability distributions) on common domains Dk

are

a) perfectly indistinguishable (“=”) if for each k, the two distributions
vark and var′k are identical;
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Figure 2.2: Example of simulatability. The view of H is compared.

b) statistically indistinguishable (“≈SMALL”) for a class SMALL of func-
tions from

�
to

�
≥0 if the distributions are discrete and their statistical

distances

∆(vark, var
′
k) :=

1

2

∑

d∈Dk

|P (vark = d)− P (var′k = d)| ∈ SMALL

(as a function of k). SMALL should be closed under addition, and

with a function g also contain every function g ′ ≤ g. Typical classes
are EXPSMALL containing all functions bounded by Q(k) · 2−k for a

polynomial Q, and the (larger) class NEGL.

c) computationally indistinguishable (“≈poly”) if for every algorithm Dis

(the distinguisher) that is probabilistic polynomial-time in its first input,

|P (Dis(1k, vark) = 1)− P (Dis(1k, var′k) = 1)| ≤
1

poly(k)
.

(Intuitively, Dis, given the security parameter and an element chosen

according to either vark or var′k, tries to guess which distribution the
element came from.)

We write ≈ if we want to treat all cases together. 3

Now we present the simulatability definition. It captures that whatever
an adversary can achieve in the real system against certain honest users,

another adversary can achieve against the same honest users in the ideal
system. A typical situation is illustrated in Figure 2.2.
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Definition 2.14 (Simulatability) Let systems Sys1 and Sys2 with a valid
mapping f be given.

a) We say Sys1 ≥
f,perf
sec Sys2 (perfectly at least as secure as) if for every

configuration conf 1 = (M̂1, S , H, A1) ∈ Conff(Sys1), there exists a con-
figuration conf 2 = (M̂2, S , H, A2) ∈ Conf(Sys2) with (M̂2, S ) ∈ f(M̂1, S )

(and the same H) such that

view conf 1
(H) = view conf 2

(H).

b) We say Sys1 ≥
f,SMALL
sec Sys2 ( statistically at least as secure as) for a

class SMALL if the same as in a) holds with view conf 1,l(H) ≈SMALL

view conf 2,l(H) for all polynomials l, i.e., statistical indistinguishability

of all families of l-step prefixes of the views.

c) We say Sys1 ≥
f,poly
sec Sys2 ( computationally at least as secure as) if

the same as in a) holds with configurations from Conf
f
poly(Sys1) and

Confpoly(Sys2) and computational indistinguishability of the families of

views.

In all cases, we call conf 2 an indistinguishable configuration for conf 1.
Where the difference between the types of security is irrelevant, we simply

write ≥f,
sec, and we omit the indices f and sec if they are clear from the

context. 3

Remark 2.3. Adding a free adversary out-port in the comparison (like the
guessing-outputs used to define semantic security [26]) does not make the

definition stricter: Any such out-port can be connected to an in-port added
to the honest user with sufficiently large length bounds. H does not react

on this input, but nevertheless it is included in the view of H, i.e., in the
comparison. (In more detail, this can be proved similar to the synchronous

case in [44].) ◦

2.3.4 Lemmas and Stronger Simulatability

The main results in this section concern the notion of combining several

machines into one, and transitivity of the relations “as secure as”. The former

is an essential ingredient in the composition and is used to define blackbox
simulatability. The remaining lemmas are auxiliary results.
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Lemma 2.1 (Properties of Runs and Views) Let Ĉ be a closed collec-
tion.

a) Whenever a machine M is switched in a run of Ĉ , there is at most one

port p ∈ ports(Ĉ ) with p 6= ε. If it exists, p ∈ ports(M).

b) Views of polynomial-time machines are always of polynomial size. If

Ĉ is polynomial-time, the runs are of polynomial size.

2

Proof. Part a) is obviously true before the first iteration, and can easily
be seen inductively by following one iteration step by step. Part b) holds

because a polynomial-time machine can only make a polynomial number of
steps and build up polynomial-size states and in- and outputs. A run of Ĉ

consists of the steps of its polynomial-time machines and the buffers, whose
number of steps and queue size are bounded by the inputs received.

In the following, by new name we always mean one that does not occur in
the systems and configurations already under consideration. We can always

assume without loss of generality that a new name exists. (Otherwise we
can, e.g., extend the alphabet.)

Definition 2.15 (Combination of Machines) Let D̂ be a collection without

buffers. For a new name nD, we define the combination of D̂ into one ma-

chine D with this name, written comb(D̂) in slight abuse of notation.

a) Its ports are PortsD := ports(D̂). (Their order would be an additional

parameter of comb, but it never matters in the following.)

b) Its states are StatesD := ×M∈D̂StatesM.

c) Its transition function δD is defined by applying the transition function
of each submachine to the corresponding sub-states and inputs, unless

D has reached a final state (see below). In that case, δD does not change
the state and produces no output.

d) Its length function lD is defined by applying the length function of the
corresponding submachine for each input.
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e) Its initial states are IniD := ×M∈D̂IniM. For every k ∈
�
, we identify

the state (1k)M∈D̂ with 1k (for the conventions in configurations).

f) If there is a master scheduler X ∈ D̂, then FinD is the set of all states
of D where X is in a state from FinX. Otherwise D stops as soon as all

sub-machines have stopped: FinD := ×M∈D̂FinM.

3

Lemma 2.2 (Combination) Let Ĉ be a collection without buffers, D̂ ⊆ Ĉ ,

and D := comb(D̂) with a name that is new in Ĉ . Let Ĉ ∗ := (Ĉ \ D̂)∪ {D}.

a) D is well-defined.

b) If [Ĉ ] is a closed collection, then so is [Ĉ ∗].

c) The view of any set of original machines in [Ĉ ∗] is the same as in [Ĉ ].
This includes the views of the sub-machines in D, which are well-defined

functions of the view of D.

d) Combination is associative: If D̂ = D̂1 ∪ D̂2 and D1 := comb(D̂1), then
comb({D1} ∪ D̂2) = D, if one identifies Cartesian products that differ

only in the bracket structure.

e) If all machines in D̂ are polynomial-time, then so is D.

f) If D̂ = D̂p ∪ D̂wp, where all machines in D̂p are polynomial-time and

all those in D̂wp weakly polynomial-time, then D is polynomial-time if
all inputs to D̂wp are made by D̂p, i.e., for every port p? ∈ ports(D̂wp),

we have p!, p/! ∈ ports(D̂p).

2

Proof. a) Ĉ is a collection, thus all machines in D̂ ⊆ Ĉ have unique names
and disjoint port sets, and δD is well-defined. By definition, δD applied to a

final state of D or to an empty input does not change the state and produces
no output.

b) D is again simple or a master scheduler because we only combined such

machines. Since we selected a new name for D and did not add any port,
Ĉ ∗ is a collection. By construction ports(Ĉ ∗) = ports(Ĉ ), which implies

19



ports([Ĉ ∗]) = ports([Ĉ ]) and thus free([Ĉ ∗]) = free([Ĉ ]). Thus Ĉ ∗ is still
closed.

c) Whenever the run algorithm (Definition 2.7) switches a non-buffer

machine M then that machine is the only one that has a non-empty input,
and only at one port (Lemma 2.1). Therefore we can identify each step of D

with a step of the unique submachine of D that receives a non-empty input
in that step, and vice versa. The other sub-machines, although switched

by δD, neither change their states nor produce an output (Definition 2.2).
Hence it makes no difference to the variables of the run algorithm that they

are not switched in Ĉ . In Phase (3) possibly more buffers switch in [Ĉ ∗]
than in [Ĉ ], but they do not receive an input and thus nothing is added to

the run. Overall, we have defined a bijection between the runs of the two
systems whose projection to the views of any subsets of original machines

are identical.
d) This can easily be seen from the associativity of the underlying oper-

ations (union of ports, Cartesian product of states with the given identifica-
tion, transition functions, and initial states), and also for the final states.

e) The running time of D is bounded by the sum of the running times of

the machines in D̂ . (It can be implemented by a Turing machine that has all
the tapes of the individual machines and the Cartesian product of the state

spaces; then it can simulate each step without overhead.)
f) As the running time of all machines in D̂p is polynomial, their overall

output is of polynomial length. This bounds the overall input length of the
machines in D̂wp, as the intermediate buffer only delivers each message once.

Thus their running time is also polynomial.

With the notion of combination, we can add the notion of blackbox sim-

ulatability to Definition 2.14.

Definition 2.16 (Universal and Blackbox Simulatability) Universal simu-
latability means that A2 in Definition 2.14 does not depend on H (only on

M̂1, S , and A1). Blackbox simulatability means that A2 is the combination
of a fixed simulator Sim, depending at most on M̂1, S and ports(A1), and a

machine A′
1 that differs from A1 at most in the names and labels of some

ports. The partial function σ that defines this renaming is tacitly assumed to

be given with Sim. A1 is then called a blackbox submachine of Sim. 3
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Clearly, blackbox simulatability implies universal simulatability, and univer-
sal simulatability implies “standard” simulatability.

Lemma 2.3 (Users) The condition on the ports of H in a configuration
(Definition 2.10) is equivalent to ports(H)∩ports(M̂ ) = ∅ (1) and ports(H)c∩
ports([M̂ ]) ⊆ S (2). 2

Proof. Let inner(Ĉ ) := ports(Ĉ ) \ free(Ĉ ) for every collection Ĉ . Clearly

inner(Ĉ )c = inner(Ĉ ).
The original condition can be written as (1) and ports(H)c ∩ (free([M̂ ]) \

S ) = ∅ (3). Now (3) ⇔ ports(H)c ∩ free([M̂ ]) ⊆ S . It remains to be shown
that ports(H)c∩ inner([M̂ ]) = ∅. This is equivalent to ports(H)∩ inner([M̂ ]) =

∅. Now ports([M̂ ]) only contains additional buffer ports and clock in-ports
compared with ports(M̂ ). Hence (1) even implies ports(H) ∩ ports([M̂ ]) = ∅.

Lemma 2.4 (Valid Mappings and Suitable Configurations) Let sys-
tems Sys1 and Sys2 with a valid mapping f be given.

a) Then S c ∩ forb(M̂i, S ) = ∅ for i = 1, 2, i.e., the ports that users are
intended to use are not at the same time forbidden (not even in the

corresponding structures of the other system).

b) With regard to Sys1 alone, the restriction to suitable configurations is
without loss of generality in the following sense: For every conf 1 =

(M̂1, S , H, A1) ∈ Conf(Sys1) \ Conff (Sys1), there is a configuration
conf f,1 = (M̂1, S , Hf, Af,1) ∈ Conff(Sys1) such that view conf f,1

(Hf) =

view conf 1
(H).

2

Proof. For Part a) recall that forb(M̂i, S ) = ports(M̂i) ∪ (free([M̂i]) \ S )c.
Obviously we only have to show S c ∩ ports(M̂i) = ∅. This follows from

S ⊆ free([M̂i]).
For Part b), we want to construct Hf by giving each port p ∈ ports(H) ∩

forb(M̂2, S ) a new name. Clearly the runs and views remain the same if we
consistently rename all six ports with the same name. The new collection is

a configuration (M̂1, S , Hf, Af,1) if none of the renamed ports belongs to [M̂1].
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If it were, then pc ∈ ports([M̂1]) because it is a buffer port, and with any
port, the entire buffer belongs to [M̂1]. Now Lemma 2.3 implies pc ∈ S . As

f is a valid mapping, Part a) implies p 6∈ forb(M̂2, S ), in contradiction to the

original condition on p.

Lemma 2.5 (Indistinguishability) a) The statistical distance
∆(φ(vark), φ(var′k)) between a function φ of two random variables

is at most ∆(vark, var
′
k).

b) Perfect indistinguishability of two families of random variables implies
perfect indistinguishability of every function φ of them. The same holds

for statistical indistinguishability with any class SMALL, and for com-
putational indistinguishability if φ is polynomial-time computable and

the elements of Dk are of polynomial length in k.

c) Perfect indistinguishability implies statistical indistinguishability for ev-

ery non-empty class SMALL, and statistical indistinguishability for a
class SMALL ⊆ NEGL implies computational indistinguishability.

d) All three types of indistinguishability are equivalence relations.
2

These are well-known facts; hence we omit the easy proof.

Lemma 2.6 (Types of Security) If Sys1 ≥
f,perf
sec Sys2, then Sys1 ≥

f,SMALL
sec

Sys2 for every non-empty class SMALL. Similarly, Sys1 ≥
f,SMALL
sec Sys2 for

a class SMALL ⊆ NEGL implies Sys1 ≥
f,poly
sec Sys2. 2

Proof. The first part follows immediately from Lemma 2.5 with the fact that

equality of possibly infinite views implies equality of all their fixed-length
prefixes; the second part with the fact that the view of H in a polynomial-

time configuration is of polynomial length and that the distinguisher is a

special case of a function φ.

Lemma 2.7 (Transitivity) If Sys1 ≥
f1 Sys2 and Sys2 ≥

f2 Sys3, then Sys1

≥f3 Sys3, where f3 := f2 ◦f1 is defined in a natural way as follows: f3(M̂1, S )

is the union of the sets f2(M̂2, S ) with (M̂2, S ) ∈ f1(M̂1, S ). This holds for

perfect, statistical and computational security, and also for universal and
blackbox simulatability. 2
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Proof. Clearly, f3 is always a valid mapping.
Let a configuration conf 1 = (M̂1, S , H, A1) ∈ Conff3(Sys1) be given.

Hence ports(H) ∩ forb(M̂3, S ) = ∅ for all (M̂3, S ) ∈ f3(M̂1, S ) (∗).
If ports(H)∩forb(M̂2, S ) 6= ∅ for a (M̂2, S ) ∈ f1(M̂1, S ), we give these ports

new names: By Lemma 2.4b), we derive a configuration conf f,1 = (M̂1, S ,

Hf , Af,1) ∈ Conff1(Sys1) with view conf f,1
(Hf) = view conf 1

(H).

Because of Sys1 ≥
f1 Sys2, there exists a configuration conf f,2 = (M̂2, S ,

Hf , Af,2) ∈ Conf(Sys2) with (M̂2, S ) ∈ f1(M̂1, S ) such that view conf f,1
(Hf) ≈

view conf f,2
(Hf).

As Hf only has ports from H and new ports, and by (∗) and the definition

of f3, it has no ports from forb(M̂3, S ) for any structure (M̂3, S ) ∈ f2(M̂2, S ),
i.e., conf f,2 ∈ Conff2(Sys2). Hence, by Sys2 ≥

f2 Sys3, there exists conf f,3 =

(M̂3, S , Hf, Af,3) ∈ Conf(Sys3) with (M̂3, S ) ∈ f2(M̂2, S ) and view conf f,2
(Hf) ≈

view conf f,3
(Hf).

Together, we have (M̂3, S ) ∈ f3(M̂1, S ) by definition of f3 and

view conf f,1
(Hf) ≈ view conf f,3

(Hf) because indistinguishability is transitive

(Lemma 2.5).
Finally, we derive a configuration conf 3 = (M̂3, S , H, A3) with the original

user H. For each changed port p ∈ ports(H), no port with the same name
occurs in ports([M̂3]) because the name was new. Thus we can change the

name back (in all six ports that have it) iff the old name also does not occur
in ports([M̂3]). If this were not true, then as in the proof of Lemma 2.4b), in

particular pc ∈ ports([M̂3]), and Lemma 2.3 and (∗) imply pc ∈ S . As f2 is a
valid mapping, Lemma 2.4a) implies p 6∈ forb(M̂2, S ), in contradiction to the

condition for renaming p.
Hence we have view conf 3

(H) = view conf f,3
(Hf) and thus view conf 1

(H) ≈
view conf 3

(H). This finishes the proof for “standard” simulatability.
Now we show universal simulatability. First, the renaming from A1 to

Af,1 can be described in terms of the ports of A1 and (M̂1, S ) (they uniquely
define the ports of H with the same name as a port of A1). For Af,2 and Af,3

we use the given universality, and the last renaming into A3 is the reverse of

the first. For blackbox simulatability, renaming can be done as a blackbox
construction, and Af,2 uses Af,1, and Af,3 uses Af,2, as a blackbox by the

preconditions. Associativity of combinations (Lemma 2.2) implies that this
is equivalent to one simulator with a blackbox.
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Clearly, ≥f is also reflexive with the identity function f = id.

2.4 Standard Cryptographic Systems

In this section, we define an important specialization of the general model

which targets common cryptographic settings. In Section 2.4.1, we define
such standard cryptographic systems restricted to static adversaries, similar

to the synchronous model defined in the deliverable D4 [4]. In Section 2.4.2,
we show how to model also adaptive adversaries. Adaptive adversaries have

not been addressed in the synchronous model presented in the deliverable
D4 [4] yet they represent an important class of adversaries. However, the

approach chosen here is also adaptable to the synchronous case.

2.4.1 Static Adversaries

The intuition behind this class of systems is that in a real system Sys ,
there is one machine per human owner, and each machine is correct if and

only if its owner is honest. Furthermore, a correct machine is assumed to stay
correct during the complete lifetime of the system. The system is derived

from an intended structure (M̂ ∗, S ∗) and a trust model.
We define that all buffers that connect different machines are scheduled

by the adversary. We only allow a machine Mu to schedule buffers that
transport messages from itself to itself, and require all these connections to

be secure: this allows us to define a machine Mu as a combination of (local)
sub-machines. The case where the user in- and outputs are also treated in

this way is called localized.

Definition 2.17 (Standard Cryptographic Structures and Trust Models) A

standard cryptographic structure is a structure (M̂ ∗, S ∗) where M̂ ∗ =
{M1, . . . , Mn} with n ∈

�
and S ∗c = {inu !, outu?|u = 1, . . . , n}, where inu?

and outu ! are ports of machine Mu. (We have specified the complement of
S ∗ because that is independent of the buffer notation.) Each machine Mu is

simple, and for all names p, if p/! ∈ ports(Mu) then p?, p! ∈ ports(Mu).
A localized cryptographic structure is the same except that for all u =

1, . . . , n, inu
/! also belongs to S ∗c and outu

/! to ports(Mu).
A standard trust model for such a structure is a pair (ACC, χ) of an
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access structure and a channel model. Here ACC ⊆ P({1, . . . , n}) is closed
under insertion (of more elements) and denotes the possible sets of correct

machines. χ is a mapping χ : Gr(M̂ ∗) → {s, a, i}. It characterizes each

high-level connection as secure (private and authentic), authenticated (only
authentic), or insecure (neither private nor authentic). If a connection c

connects a machine Mu with itself, we require χ(c) = s. 3

Typical examples are threshold structures ACC t := {H ⊆
{1, . . . , n} | |H| ≥ t} with t ≤ n.

Definition 2.18 (Standard Static Cryptographic Systems) Given a standard

(or localized) cryptographic structure and trust model, the corresponding stan-
dard (or localized) cryptographic system with static adversary

Sys := StanStat(n, M̂ ∗,ACC, χ)

is Sys := {(M̂H, SH)|H ∈ ACC} with S c
H := {inu !, outu?|u ∈ H}, and inu

/! in

the localized case, and M̂H := {Mu,H|u ∈ H}, where Mu,H is derived from Mu

as follows:

• The ports inu? and outu ! and all clock ports are unchanged.

• Consider a simple port p ∈ ports(Mu) \ {inu?, outu !}, where pC ∈
ports(Mv) with v ∈ H, i.e., c = {p, pC} is a high-level connection be-

tween two correct machines:

– If χ(c) = s (secure), p is unchanged.

– If χ(c) = a (authenticated) and p is an output port, Mu,H gets an
additional new port pd, where it duplicates the outputs at p. This

can be done by a trivial blackbox construction. We assume without
loss of generality that there is a systematic naming scheme for such

new ports (e.g., appending d) that does not clash with prior names.
The new port automatically remains free, and thus the adversary

connects to it. If p is an input port, it is unchanged.

– If χ(c) = i (insecure) and p is an input port, p is replaced by a

new port pa. (Thus the adversary can get the outputs from pC and
make the inputs to pa and thus completely control the connection.)

If p is an output port, it is unchanged.
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• Consider a simple port p ∈ ports(Mu) \ {inu?, outu !}, where pC 6∈
ports(Mv) for all v ∈ H: If p is an output port, it is unchanged. If

it is an input port, it is renamed into pa. (In both cases the adversary

can connect to it.)

For localized systems, the same definition holds with the obvious modifica-

tions: Ports inu
/! with u ∈ H also belong to S c

H, and p is only chosen in
ports(Mu) \ {inu?, outu !, outu

/!}. 3

Definition 2.19 (Standard Static Ideal Systems) A standard (or localized)

static ideal system is of the form Sys2 = {({THH}, SH)|H ∈ ACC} for an ac-
cess structure ACC ⊆ {1, . . . , n} for some n ∈

�
and the same sets of specified

ports as in corresponding real systems, i.e., S c
H := {inu !, outu?, (inu

/!)|u ∈ H}.
3

One then compares a standard or localized static real system with a

standard or localized static ideal system with the same access structure,
using the canonical mapping (Definition 2.11).

2.4.2 Adaptive Adversaries

Standard cryptographic systems as defined in the previous section are

based on the intuition that it is a priori clear who are the “bad guys” and
who are the “good guys.” However, real-world adversaries often can also

corrupt honest machines during the lifetime of a system, e.g., by exploiting
buffer overflows or badly set security policies with a trojan horse hidden in

an e-mail. This corresponds to malicious faults. In the following adaptive
(or dynamic) adversary model, the set of corrupted machines can increase

over time.
Adaptive adversary models are strictly more powerful than static ones,

i.e., there are examples of systems secure against static adversaries that are
insecure against adaptive adversaries who can corrupt the same sets of ma-

chines [17].

Definition 2.20 (Adaptive Standard Cryptographic Systems) Let a standard

(or localized) cryptographic structure (M̂ ∗, S ∗) with a channel model χ be
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given. The corresponding standard cryptographic system with adaptive ad-
versary has only one structure, (M̂ , S ) with M̂ := {M′

u|u ∈ {1, . . . , n}}. Here

S c := S ∗c ∪ {corruptu?|u ∈ {1, . . . , n}}.

The new ports are for corruption requests. (Those must be made via specified
ports because the service will change at least at the corresponding ports inu?

and outu ! also in the ideal system.)
For the machines, let Mu,H for u := 1, . . . , n denote the machines derived

as in the static case (Definition 2.18) with H := {1, . . . , n} (all intended ma-

chines are present) and χ. Then M′
u is derived from Mu,H as follows: It gets

the new port corruptu?, and two new ports cor outu!, cor inu? for communi-

cation with A after corruption. On input 1 at corruptu?, it sends a predefined
“corruption response” (corruption, σ) to A via cor outu!, and from then on be-

comes “transparent:” Every input m at a port p? is translated into the output
(p?, m) at cor outu!, and every input (p!, m) at cor inu? is translated into the

output m at p!.
There are two main types of corruption responses σ:

a) With erasure: σ is the current state of M′
u.

b) Without erasure: σ is the entire view of M′
u. This corresponds to the

assumption that nothing can be erased reliably. Thus every transition
of δMu

is modified in δM′
u

to store the current step.

3

Definition 2.21 (Standard Adaptive Ideal Systems) A standard (or local-

ized) adaptive ideal system only has one structure ({TH}, S ) with S as in
Definition 2.20. Tolerable sets of corrupted machines are defined by an ac-

cess structure ACC∗ within TH: If the set of received corruption requests is
no longer in ACC∗, i.e., there were “too many,” then TH sends its state to

A and gives all control to A. (Thus after this, the ideal system no longer
guarantees anything and simulation becomes trivial.) 3

Several extensions are possible: One may extend the corruption responses to

two classes of storage, an erasable and a non-erasable one, e.g., to model the

different vulnerability of session keys and long-term keys. This means to re-
fine the state spaces of each machine as a Cartesian product. In- and outputs

27



would be treated like erasable storage. One can also model non-binary cor-
ruption requests, e.g., stop requests and requests to corrupt different classes

of storage. To model proactive systems [42], one needs repair requests in

addition to corruption requests, and appropriate repair responses, e.g., re-
turning to an initial state with only a certain class of storage still intact.

2.5 Composition

In this section, we show that the relation “at least as secure as” is con-

sistent with the composition of systems. The basic idea is the following:
Assume that we have proven that a system Sys0 is as secure as another sys-

tem Sys ′0 (typically an ideal system used as a specification). Now we would

like to use Sys0 as a secure replacement for Sys ′0, i.e., as an implementation
of the specification Sys ′0.

Usually, replacing Sys ′0 means that we have another system Sys1 that uses
Sys ′0; we call this composition Sys∗. Inside Sys∗ we want to use Sys0 instead,

which gives a composition Sys#. Hence Sys# is typically a completely real
system, while Sys∗ is partly ideal. Intuitively we expect Sys# to be at least

as secure as Sys∗. The situation is shown in the left and middle part of
Figure 2.3.

Sys0

≥f#Sys1
Sys#

Sys'0

Sys1
Sys*

≥f1 Sys'

≥f0

≥f

Figure 2.3: Composition theorem and its use in a modular proof: The left and
middle part show the statement of Theorem 2.1, the right part Corollary 2.1.

The remainder of this section is quite similar to the corresponding section

of [48] for the synchronous case.
We define composition for every number n of systems Sys1, . . . , Sysn. We

do not provide a composition operator that produces one specific compo-
sition. The reason is that one typically does not want to compose every
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structure of one system with every structure of the others, but only with
certain matching ones. For instance, if the individual machines of Sys2 are

implemented on the same physical devices as those of Sys1, as usual in a

layered distributed system, we only compose structures corresponding to the
same set of corrupted machines. However, this is not the only conceivable

situation. Hence we allow many different compositions.

Definition 2.22 (Composition) The composition of structures and of sys-

tems is defined as follows:

a) Structures (M̂1, S1), . . . , (M̂n, Sn) are composable if ports(M̂i) ∩
forb(M̂j, Sj) = ∅ and Si ∩ free([M̂j]) = Sj ∩ free([M̂i]) for all i 6= j.
Their composition is then (M̂1, S1)|| . . . ||(M̂n, Sn) := (M̂ , S ) with M̂ =

M̂1 ∪ . . . ∪ M̂n and S = (S1 ∪ . . . ∪ Sn) ∩ free([M̂ ]).

b) A system Sys a composition of Sys1, . . . , Sysn, written Sys ∈ Sys1 ×
· · · × Sysn, if each structure (M̂ , S ) ∈ Sys has a unique representation
(M̂ , S ) = (M̂1, S1)|| . . . ||(M̂n, Sn) with composable structures (M̂i, Si) ∈
Sys i for i = 1, . . . , n.

c) We then call (M̂i, Si) the restriction of (M̂ , S ) to Sys i and write

(M̂i, Si) = (M̂ , S )dSysi
.

3

The first condition for composability makes one structure a valid user of
another. The second one excludes ambiguities for S , specifically the case

where p ∈ free([M̂i])∩ free([M̂j]) (e.g., a clock port for a high-level connection
between these systems) and p ∈ Si but p 6∈ Sj.

Lemma 2.8 (Composition Technicalities) a) For all compositions of
structures, we have [M̂ ] = [M̂1]∪ . . .∪ [M̂n] and free([M̂ ]) ⊆ free([M̂1])∪
. . . ∪ free([M̂n]).

b) We also have S = free([M̂ ]) \ (S̄1 ∪ . . . ∪ S̄n). (By S̄i we still mean

free([M̂i]) \ Si.)
2

Proof. a) Structures consist of simple machines only. Hence both sides of the
first equation contain all these simple machines and all the buffers for their
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ports. If p ∈ free([M̂ ]), we now know p ∈ ports([M̂i]) for some i. Furthermore,
pc 6∈ ports([M̂ ]) and thus pc 6∈ ports([M̂i]). Thus p ∈ free([M̂i]).

b) Let S ′ := free([M̂ ]) \ (S̄1 ∪ . . . ∪ S̄n). If p ∈ S ′, then p ∈ free([M̂i]) for

some i by Part a), and p 6∈ S̄i immediately gives p ∈ Si. Now assume that
p ∈ S \S ′. Thus p ∈ free([M̂ ]), but there exists i with p ∈ S̄i. However, there

also exists j with p ∈ Sj. Together, p ∈ Sj ∩ free([M̂i]). By composability,
this implies p ∈ Si ∩ free([M̂j]), contradicting p ∈ S̄i.

The following theorem shows that modular proofs are indeed possible.

Recall that the situation is shown in the left and middle part of Figure 2.3.

The main issue in formulating the theorem is to characterize Sys#, i.e., to
formulate what it means that Sys0 replaces Sys ′0.

Theorem 2.1 (Secure Two-system Composition) Let Sys0, Sys ′0, Sys1

be systems and Sys0 ≥
f0 Sys ′0 for a valid mapping f0.

Let Sys# ∈ Sys0×Sys1 and Sys∗ ∈ Sys ′0×Sys1 be compositions that fulfill

the following structural conditions: For every structure (M̂ #, S ) ∈ Sys# with
restrictions (M̂i, Si) = (M̂ #, S )dSysi

and every (M̂ ′
0, S0) ∈ f0(M̂0, S0), the

composition (M̂ ′
0, S0)||(M̂1, S1) exists, lies in Sys∗, and fulfills ports(M̂ ′

0)∩S
c
1 =

ports(M̂0) ∩ S c
1 .

Let f# denote the function that maps each (M̂ #, S ) to the set of these

compositions. Then we have

Sys# ≥f#

Sys∗.

This holds for perfect, statistical and, if Sys 1 is polynomial-time, for compu-

tational security, and also for the universal and blackbox definitions. 2

Proof. First we have to show that f# is a valid mapping. This will be

done in Step 0 below. Then let a configuration conf # = (M̂ #, S , H, A#) ∈

Conff#

(Sys#) be given and (M̂i, Si) := (M̂ #, S )dSysi
for i = 0, 1. We have to

show that there is an indistinguishable configuration conf ∗ ∈ Conf(Sys∗) for

it. The outline of the proof is as follows; it is illustrated in Figure 2.4.

1. We combine H and M̂1 into a user H0 to obtain a configuration conf 0 =

(M̂0, S0, H, A0) ∈ Conf(Sys0) where the view of H as a submachine of
H0 is the same as that in conf #.
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A0

= A#

M0

A*
= A'0

M'0

M1
^ A#

M0

H0
Define
H0, A0

Sys0 ≥f0 Sys'0

Define
M1
^H0

H

M#^

M*
^

conf #

conf*

conf0

conf'0

M1
^

H

M1
^

A'0

M'0

H

H

S'0

S*

^ ^

^ ^
^
M*, A*

Figure 2.4: Configurations in the composition theorem. Dashed machines

are internal sub-machines. (The connections drawn inside H0 are not dashed

because the combination does not hide them.)
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2. We show that conf 0 ∈ Conff0(Sys0). Then by the precondition Sys0 ≥
f0

Sys ′0, there is a configuration conf ′
0 = (M̂ ′

0, S0, H0, A
′
0) ∈ Conf(Sys ′0)

with (M̂ ′
0, S0) ∈ f0(M̂0, S0) where the view of H0 is indistinguishable

from that in conf 0.

3. We decompose H0 into H and M̂1 again and derive a configuration
conf ∗ = (M̂ ∗, S , H, A∗) ∈ Conf(Sys∗) where the view of H equals that

of H as a submachine of H0 in conf ′0.

4. We conclude that conf ∗ is an indistinguishable configuration for conf #.

We now present these steps in detail.

Step 0: We have to show that S ∗ = S whenever (M̂ ∗, S ∗) ∈ f#(M̂ #, S ).

Let (M̂i, Si) := (M̂ #, S )dSysi
for i = 0, 1. Then (M̂ ∗, S ∗) is a composi-

tion (M̂ ′
0, S0)||(M̂1, S1) with (M̂ ′

0, S0) ∈ f0(M̂0, S0). Hence S = (S0 ∪ S1) ∩
free([M̂ #]) and S ∗ = (S0 ∪ S1) ∩ free([M̂ ∗]).

We only show S ⊆ S ∗; the other direction of the proof is completely
symmetric. Hence let p ∈ S .

If p ∈ S0, then pc 6∈ ports([M̂ ′
0]) because (M̂ ′

0, S0) is a structure, and
pc 6∈ ports([M̂ #]) ⊇ ports([M̂1]) because p is free in [M̂ #]. With Lemma 2.8b),

pc 6∈ ports([(M̂ ′
0 ∪ M̂1)]) = ports([M̂ ∗]). Thus p ∈ S ∗.

If p ∈ S1, then pc 6∈ ports([M̂1]). Hence p 6∈ S ∗ would imply pc ∈
ports([M̂ ′

0]) and thus pc ∈ ports(M̂ ′
0) because it is not a port of a buffer.

By the precondition ports(M̂ ′
0) ∩ S c

1 = ports(M̂0) ∩ S c
1 of the theorem, this

would imply pc ∈ ports(M̂0) in contradiction to the fact that p ∈ free([M̂ #]).

Step 1: The precise definition of conf 0 = (M̂0, S0, H, A0) is (M̂0, S0) =

(M̂ #, S )dSys0
and H0 := comb(M̂1 ∪ {H}) and A0 := A#. This is a valid

configuration from Conf(Sys0):

• (M̂0, S0) = (M̂ #, S )dSys0
is a valid structure by the definition of a com-

position.

• Closed collection: The overall set of ports is the same as in conf #.

Hence the machines still have pairwise disjoint port sets, and the free
ports are unchanged.

• User condition: We have to show ports(H0)∩forb(M̂0, S0) = ∅. Compos-
ability implies ports(M̂1) ∩ forb(M̂0, S0) = ∅, and port disjointness has
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just been shown. Thus ports(H)∩ S̄ c
0 = ∅ remains to be shown. Assume

that a port p contradicts this. Thus pc ∈ free([M̂0]) ⊆ ports([M̂ #]), and

the validity of conf # and Lemma 2.3 imply pc ∈ S . By Lemma 2.8b),

this contradicts pc ∈ S̄0.

• For the computational case, H and all machines in M̂1 are polynomial-

time by the preconditions. Hence H0 is polynomial-time by Lemma 2.2.

Hence Lemma 2.2 implies view conf 0
(H) = view conf #(H).

Step 2: We now show that conf 0 ∈ Conff0(Sys0), i.e., H0 has no ports from

forb(M̂ ′
0, S0) for any structure (M̂ ′

0, S0) ∈ f0(M̂0, S0). Assume that it had such
a port p. By construction of H0, p is a port of M̂1 or H.

The case p ∈ ports(M̂1) is excluded by the required composability of
(M̂ ′

0, S0) and (M̂1, S1).

Thus let p ∈ ports(H). We required that (M̂ ∗, S ) := (M̂ ′
0, S0)||(M̂1, S1) ex-

ists and lies in f#(M̂ #, S ). As conf # is suitable, this implies p 6∈ forb(M̂ ∗, S ).

Hence p 6∈ ports(M̂ ∗) and thus p 6∈ ports(M̂ ′
0). Thus the case pc ∈

free([M̂ ′
0]) \ S0 remains. Using Lemma 2.8b) for (M̂ ∗, S ), this implies pc 6∈ S .

Furthermore, pc ∈ free([M̂ ∗]) because p 6∈ ports(M̂ ∗) implies p 6∈ ports([M̂ ∗])
(since p cannot be a port of a buffer). Hence pc ∈ free([M̂ ∗]) \ S in contra-

diction to p 6∈ forb(M̂ ∗, S ).

Hence conf 0 is indeed a suitable configuration. Thus Sys0 ≥
f0 Sys ′0 im-

plies that there is a configuration conf ′
0 = (M̂ ′

0, S0, H0, A
′
0) ∈ Conf(Sys ′0)

with (M̂ ′
0, S0) ∈ f0(M̂0, S0) and view conf ′0

(H0) ≈ view conf 0
(H0). This implies

view conf ′0
(H) ≈ view conf 0

(H) because the view of a submachine is a function

of the larger view (Lemmas 2.5 and 2.2).

Step 3: We define conf ∗ = (M̂ ∗, S , H, A∗) by reversing the combination of H

and M̂1 into H0: The structure is (M̂ ∗, S ) := (M̂ ′
0, S0)||(M̂1, S1), the user the

original H, and A∗ := A′
0. We show that conf ∗ ∈ Conf(Sys∗).

• Structure: (M̂ ∗, S ) ∈ Sys∗ follows immediately from the preconditions
of the theorem.

• Closed collection: The ports of H and the machines in M̂1 are disjoint
because so they were in conf #, and those of all other pairs of machines

because so they were in conf ′
0. (Recall that ports(H0) = ports(M̂1 ∪

{H}); here we exploit that we did not hide internal connections in the
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combination.) As the set of ports is the same as in conf ′
0, the free ports

are unchanged.

• User condition: We have to show ports(H) ∩ forb(M̂ ∗, S ) = ∅. This is

simply the precondition that conf # is suitable.

We can now see conf ′
0 as derived from conf ∗ by taking the combination

of M̂1 ∪ {H}. Hence Lemma 2.2 applies, and we obtain view conf ∗(H) =
view conf ′0

(H).

Step 4: We have shown that conf ∗ ∈ Conf(Sys∗). We also have (M̂ ∗, S ) ∈
f#(M̂ #, S ) by the construction of f#. The results about views in Steps 1
to 3 and transitivity (Lemma 2.7) imply that view conf ∗(H) ≈ view conf #(H).

Hence conf ∗ is indeed an indistinguishable configuration for conf #.

Universal and blackbox: For the universal case, note that A0 = A# does not
depend on H. Then A′

0 only depends on (M̂0, S0) and A0, and thus so does

A∗ = A′
0. For the blackbox case, A′

0 additionally consists of a simulator Sim

with A0 = A# as a blackbox, and thus so does A∗ = A′
0.

The following corollary finishes the definition and proof of the situation
shown in Figure 2.3: We now assume that there is also a specification Sys ′

for the system Sys∗, as shown in the left part of the figure. The result
immediately follows from transitivity.

Corollary 2.1 Consider five systems satisfying the preconditions of Theo-

rem 2.1, and a sixth one, Sys ′, with Sys∗ ≥f1 Sys ′. Then Sys# ≥f Sys ′ where
f := f1 ◦ f# as in the transitivity lemma. 2
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3 Example: Secure Message Transmission

In the following, we present an ideal and a real system for secure mes-

sage transmission. This service enables secure point-to-point channels and
is a basic building block of the MAFTIA middle-ware. We chose a similar

example as in MAFTIA deliverable D4 [4] to illustrate the influence of the
synchrony assumptions of the network on the modeling. Further illustrating

applications of the security model in security definitions and proofs can be
found in two separate papers: The first paper [7] links the model with the

classical notion of non-interference and provides, based on above secure mes-
sage transmission service, a cryptographic firewall. The second paper [46]

models secure multi-party key establishment, a potential MAFTIA middle-
ware service, and shows how to integrate complexity-theoretic assumptions

as well as how to handle adaptive corruptions.
The real system sends messages over insecure channels, but for the initial

key exchange authenticated channels may be used as well.
To keep the possible real implementations simple in the following bottom-

level proof that must be done with cryptographic reductions, we specify an

ideal system that tolerates some imperfections: The adversary learns who
communicates with whom and the length of the messages. He can delay

messages, change their order and suppress or replay them (without, how-
ever, seeing their contents). Measures that avoid some imperfections can be

defined on top of our ideal system and proven with the composition theo-
rem. In particular, the length of bounded-length messages can be hidden

by padding, and delivery out of sequence (in particular replays) can be pre-
vented by nonces or counters. Hiding who communicates with whom requires

complicated measures against traffic analysis, and suppression or arbitrary
delay of messages cannot be prevented at all.

Notation for data structures. For m ∈ Σ∗ let len(m) denote the length of
m. A list, l = (x1, . . . , xj), is a sequence of words from Σ∗, itself encoded as

a word from Σ∗. We also call fixed-length lists tuples or arrays. The exact
encoding does not matter as long as the number size(l) of elements in l and

these elements are efficiently retrievable, and the length of a list is efficiently

computable from the length of its elements. For a list l = (x1, . . . , xj) we
define l[i] := xi for 1 ≤ i ≤ j, and l[i] := ↓ for i > j, where ↓ is a distinct

error symbol, i.e., ↓ 6∈ Σ∗. The empty list is written (). By “adding an
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element to a list” and similar formulations we mean appending it at the end.
By ∃x ∈ l we mean that l[i] = x for some i. If we write this in a retrieval

operation, the first such x is used.

Conventions about machines. Because of Lemma 2.1a), it suffices to
specify the state-transition functions by rules for individual inputs, usually

written “On input i with i ∈ D: . . . ”, where D is a domain. Inputs where no
rule applies are ignored, i.e., the new state equals the old one and no output

is made. If an input triggers an output 6= ε or a state change, we say that
the machine accepts this input.

We do not explicitly write the length functions of the following machines,
but assume that they are derived from the domain D. As they are only

needed to make machines polynomial-time or weakly polynomial-time, any
polynomial upper bound is good enough. We also omit the order of the ports

because it does not matter in the proof.
Finally, we omit all outputs at clock out-ports. Each machine we specify

only has a port p/! if it also has p!. It makes an output 1 at p/! for each
non-empty output at p!, and no others.

3.1 Ideal System

The ideal system is of the standard or localized type from Definition 2.19
(everything holds for both variants), and any number of participants may be

faulty. It has a polynomial bound L on the length of messages as a param-
eter. We also explicitly model initialization (key exchange in real systems)

and that the adversary can completely stop machines (by exceeding their
runtime bounds in the real system). Most of this could be hidden (because

the adversary in the ideal system can suppress messages whenever anything

is wrong in the real system), but we find the explicit specification clearer.

Scheme 3.1 (Ideal System for Secure Message Transmission) Let
n ∈

�
and a polynomial L ∈

�
[x] be given. Let M := {1, . . . , n} and

ACC := P(M). Then

Sys secmsg,ideal
n,L := {({THH}, SH) | H ⊆ M}

with the standard definition S c
H := {inu !, outu? | u ∈ H}, and inu

/! in the

localized version, and THH defined as follows. When H is clear from the
context, let A :=M\H denote the indices of corrupted machines.
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The ports of THH are {inu?, outu !, from advu?, to advu !, to advu
/! | u ∈

H}, and outu
/! in the localized version. THH maintains arrays (init∗u,v)u,v∈M

and (stopped ∗
u)u∈M over {0, 1}, both initialized with 0 everywhere, and an ar-

ray (deliver ∗
u,v)u,v∈M of lists, all initially empty. The state-transition function

of THH is defined by the following rules:

Send initialization. On input (init) at inu?: If stopped ∗
u = 0 and

init∗u,u = 0, set init∗u,u := 1 and output (init) at to advu !.

Receive initialization. On input (init, u) at from advv? with u ∈
M, v ∈ H: If stopped ∗

v = 0 and init∗u,v = 0 and [u ∈ H ⇒ init ∗u,u = 1],

set init∗u,v := 1 and output (init, u) at outv !.
Send. On input (send, m, v) at inu? with m ∈ Σ+, l := len(m) ≤ L(k),

and v ∈ M \ {u}: If stopped ∗
u = 0, init∗u,u = 1, and init∗v,u = 1: If v ∈

A then { output (send, m, v) at to advu ! } else {i := size(deliver ∗
u,v) + 1;

deliver∗
u,v[i] := m; output (send blindly, i, l, v) at to advu ! }.

Receive from honest party u. On input (receive blindly, u, i) at

from advv? with u, v ∈ H: If stopped ∗
v = 0, init∗v,v = 1, init∗u,v = 1, and

m := deliver ∗
u,v[i] 6= ↓, then output (receive, u, m) at outv !.

Receive from dishonest party u. On input (receive, u, m) at

from advv? with u ∈ A, m ∈ Σ+, len(m) ≤ L(k), and v ∈ H: If stopped ∗
v = 0,

init∗v,v = 1 and init∗u,v = 1, then output (receive, u, m) at outv !.

Stop. On input (stop) at from advu? with u ∈ H, set stopped ∗
u = 1 and

output (stop) at outu !.

3

As the computational costs of each transition is at most linear in the
accumulated input size,1 the following lemma is clearly true:

Lemma 3.1 Each ideal system Sys secmsg,ideal
n,L is weakly polynomial-time. 2

THH is as abstract as we hoped for: It is deterministic and contains no

cryptographic objects. Its state-transition function should be easy to express
in every formal language for automata provided it allows our data structures,

which most such languages do.

1At first sight, the computation cost of a transition even seems to be linear only in the
current input size. However, the growing state makes book-keeping more expensive over
time.
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3.2 Real System

The real system uses asymmetric encryption and digital signatures

as cryptographic primitives; their definitions are briefly repeated in Sec-
tion 3.2.1. The message transmission scheme itself is described in Sec-

tion 3.2.2.

3.2.1 Primitives Used

Let, without loss of generality, false 6∈ Σ+.

Definition 3.1 (Encryption Schemes) A public-key encryption scheme is

a triple (genE, E, D) of polynomial-time algorithms, where genE and E are
probabilistic. genE takes an input 1k with k ∈

�
and outputs a pair (ske, pke)

of a secret decryption key and a public encryption key in Σ+. E takes such a

public key and a message m ∈ Σ+ as inputs and produces a ciphertext in Σ+;
we write this c ← Epke(m). Similarly, we write decryption as m := Dske(c).

The result may be false for wrong ciphertexts. For a correctly generated key
pair and ciphertext, decryption yields the original message.

We assume without loss of generality that the length of the public key is
a function of k, that of c a function of k and len(m), and that decryption

never increases the length. 3

This definition allows arbitrarily long messages to be encrypted. Then,
however, the length cannot be hidden. The following security definition

means that any two equal-length messages are indistinguishable even in adap-
tive chosen-ciphertext attacks. Indistinguishability was introduced in [26],

chosen-ciphertext security in [50] and formalized as “IND-CCA2” in [12]. It
is the accepted definition for general-purpose encryption. We only use our

notation for interacting machines.

Definition 3.2 (Encryption Security) Given an encryption scheme, a de-

cryptor machine Dec with one input and one output port, and with variables
ske, pke, c initialized with ↓, is defined by the following rules:

• First set (ske, pke)← genE(1
k) and output pke.
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• On input (enc, m0, m1) (intuitively a pair of messages an adversary
hopes to be able to distinguish), and if len(m0) = len(m1) and c = ↓,
randomly choose a bit b ∈R {0, 1} and store and output the encryption

c← Epke(mb).

• On input (dec, cj) and if cj 6= c, decrypt cj with ske and return the

result.

The encryption scheme is called indistinguishable under adaptive chosen-

ciphertext attack if for every probabilistic polynomial-time machine Aenc that
interacts with Dec and finally outputs a bit b∗ (meant as a guess at b), the

probability of the event b∗ = b is bounded by 1/2 + 1/poly(k). In our termi-
nology, [{Dec, Aenc}] is a closed collection and the event is a predicate on the

runs; hence the probability is well-defined. 3

Secure signature schemes often have memory. We model this by a counter.
This covers schemes storing a path in a tree or other random values, because

all random values needed can be seen as part of the secret key. (The definition
in [28] can be interpreted as even allowing that a signature divulges the

history of messages signed before; we exclude this because it is unusual and
would make our real system more complicated.)

Definition 3.3 (Signature Schemes) A signature scheme is a triple (genS,
sign, test) of polynomial-time algorithms, where genS and sign are probabilis-

tic. genS takes an input (1k, 1s) with k, s ∈
�
, where s denotes the desired

maximum number of signatures, and outputs a pair (sks, pks) of a secret sign-

ing key and a public test key in Σ+. sign takes such a secret key, a counter
sc ∈ {1, . . . , s}, and a message m ∈ Σ+ as inputs and produces a signature in

Σ+. We write this sig ← signsks ,sc(m). We assume without loss of generality
that sig is of the form (m, sig ′). Similarly, we write verification as m :=

testpks(sig). The result may be false; if not we say that the signature is valid.
For a correctly generated key pair and signature, the test yields the original

message. It only yields m 6= false if sig is of the form (m, sig ′).
We assume without loss of generality that the length of the public key is

a function of k and s, and that of sig a function sig len(k, s, len(m)). 3

Security of a signature scheme is defined against existential forgery under

adaptive chosen-message attacks [28].
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Definition 3.4 (Signature Security) Given a signature scheme and a poly-
nomial s ∈

�
[x], the signer machine Sigs is defined as follows: It has one

input and one output port, variables sks, pks initialized with ↓ and a counter

sc initialized with 0, and the following transition rules:

• First generate a key pair, (sks, pks)← genS(1
k, 1s(k)), and output pks.

• On input (sign, mj), and if sc < s(k), set sc := sc+1 and return sigj ←
signsks,sc(mj).

The signature scheme is called existentially unforgeable under adaptive
chosen-message attack if for every polynomial s and every probabilistic

polynomial-time machine Asig that interacts with Sigs and finally outputs a
value sig (meant as a forged signature), the probability that testpks(sig) gives

a message m 6= false with m 6= mj for all j is negligible (in k). As in
Definition 3.2, this probability is well-defined. 3

Lemma 3.2 (Skipping signatures) Without loss of generality, we can as-
sume that a secure signature scheme is skipping secure, meaning that Asig

may choose the values sc in the attack, but Sigs verifies that they are strictly
increasing and do not exceed s(k). 2

Proof. “Natural” secure signature schemes will already fulfill this; otherwise
encode the messages from Σ+ into Σ+ such that there is an unused message

m∗ (e.g., prepend a bit), and let Sigs sign m∗ for a value sc if Asig skips it.

3.2.2 Real System for Secure Message Transmission

The real system has the same parameters as the ideal one, except that, to

make it polynomial-time, it also has a bound on the number of transactions
per machine.

Scheme 3.2 (Real System for Secure Message Transmission) Let
parameters n, L, and thus M, be given as in Scheme 3.1, and additionally a

polynomial T ∈
�
[x]. Also let an encryption scheme and a signature scheme

be given. The system is a standard (or localized) cryptographic system

Sys secmsg,real
n,L,T := StanStat(n, M̂ ∗,ACC, χ)
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Figure 3.1: Sketch of a derived real structure for secure message transmission.

All connections are clocked by A, except those between H and Mu or Mv in

the localized case. Indices H are omitted; also in the following figures.

(Definition 2.18) with ACC = P(M) and the following machines Mu (fulfill-
ing Definition 2.17) and channel model χ:

The ports of Mu are {inu?, outu !} ∪ {netu,v!, netv,u?|v ∈ M} ∪ {autu,v!,
autv,u?|v ∈ M} and outu

/! in the localized case. High-level connections

{netu,v!, netu,v?} are insecure and {autu,v!, autu,v?} are authenticated (for key
exchange); this is sketched in Figure 3.1.

Each Mu maintains an array (init v,u)v∈M of lists, which are initially
empty, and counters scu , tcu (for signatures and transitions) initialized with

0. Final states are those with tcu = T (k). The state-transition function of
Mu is defined by the following rules (where automatically nothing happens in

a finite state):
General. The transaction counter tcu is incremented at the beginning

of every transition with non-empty input. If then tcu = T (k), the transition

finishes with the output (stop) at outu !.
Send initialization. On input (init) at inu?: If initu,u = (), generate

(sksu , pksu) ← genS(1
k, 1T (k)) and (skeu , pkeu) ← genE(1k), set initu,u :=

(sksu , skeu), and output (pksu , pkeu) at all ports autu,v !.

Receive initialization. On input (pksv , pkev) at autv ,u? with the correct
lengths for public keys: If init v,u = (), then set init v,u := (pksv , pkev) and

output (init, v) at outu !.
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Send. On input (send, m, v) at inu? with m ∈ Σ+, len(m) ≤ L(k), and
v ∈ M\{u}: If initu,u and initv,u are of the form (sksu , skeu) and (pksv , pkev),

respectively, then set scu := scu + 1 and

c← Epkev
(signsksu ,scu

(u, m, v)), (∗)

and output c at netu,v !.

Receive. On input c at netv ,u? within the length bound for a network
message as in (∗): If initu,u and init v,u are of the form (sksu , skeu) and

(pksv , pkev), respectively, then parse c in the form Epkeu
(signsksv ,scv

(v, m, u)).
More precisely:

a) sig := Dskeu
(c). Abort if the result is false.

b) m′ := testpksv (sig). Abort if the result is false.

c) (v′, m, u′) := m′. Abort if this fails or (v′, u′) 6= (v, u).

If this succeeds and len(m) ≤ L(k), output (receive, v, m) at outu !.

3

Lemma 3.3 The real system Sys secmsg,real
n,L,T is polynomial-time. 2

Proof. Each machine Mu only makes a polynomial number T (k) of transi-
tions, controlled by tcu . In each transition, it only accepts polynomial-length

inputs (controlled by the length functions implicit in the domain checks) and
performs polynomial-time algorithms.

The security of this real system with respect to our ideal system is proven
in Section 3.4. It is based on a new theorem about the security of encryption

in a reactive setting, which we present first.

3.3 Public-key Encryption in a Reactive Multi-user
Setting

An essential cryptographic part of the security proof of the real system

is captured by Theorem 3.1, which extends the standard notion of chosen-
ciphertext security of public-key encryption to a reactive multi-user setting,
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using a simulatability definition. A similar multi-user scenario has been con-
sidered in [10], but no decryption request for any of the ciphertexts produced

by a correct machine is allowed there. However, in a reactive scenario like

ours, most secret messages are also decrypted by some correct machine and
partial knowledge may leak; hence the theorem is not immediately appli-

cable. We therefore define ideal machines Encsim,H that encrypt simulated
messages, but honor all decryption requests by table look-up of the intended

messages. Then we can show simulatability in our usual sense. (However,
this ideal system is not yet “abstract” in our sense, in contrast to that for

secure message transmission.)

Remark 3.1. For cryptographers, our theorem can also be seen as a formal-

ization of the notion of “a standard hybrid argument.” For a passive setting
this was done by Theorem 3.6 of [22]. However, in a reactive setting one has

to switch over from a real state to a “corresponding” ideal state, and there
is no general definition for this. In particular, it must be made clear how

decryption is handled in the hybrids. This is now well-defined at least for
systems that use an encryption system only such that they can be rewritten

with our real encryption system. ◦

As parameters, the following systems have polynomial bounds skeys on the

number of keys to be generated in the system and sencs on the number of
encryptions per key.

Scheme 3.3 (Ideal and “Real” Encryption Systems) Let an encryp-
tion scheme (genE, E, D) and parameters n ∈

�
and skeys , sencs ∈

�
[x] be

given. For every l ∈
�
, let msim ,l denote the fixed message 0l. We define two

systems

• Sysenc,real
n,skeys ,sencs

:= {({EncH}, Senc,H) | H ⊆ M},

• Sysenc,sim
n,skeys ,sencs

:= {({Encsim,H}, Senc,H) | H ⊆ M}.

For every H, the ports are

• PortsEncH := PortsEncsim,H
:= {inenc,u?, outenc,u !, outenc,u

/! | u ∈ H},

• S c
enc,H := {inenc,u !, inenc,u

/!, outenc,u? | u ∈ H}.
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Both machines maintain a key counter kc ∈
�
, initially kc := 0, and

initially empty lists keys and ciphers. The latter is used for the look-up of

intended cleartexts in the ideal system. The transition functions are given by

the following rules. Let inenc,u? be the port where the current input is made;
the resulting output goes to outenc,u ! (with outenc,u

/! := 1 by the conventions).

• On input (generate) for EncH and Encsim,H: If kc < skeys(k) then {
kc := kc + 1; (ske, pke) ← genE(1k); add (u, kc, ske, pke, 0) to keys;

output pke } else output ↓.

• On input (encrypt, pke, m) with pke, m ∈ Σ+ and pke of correct length:

If ¬∃v, kc, ske, spke : (v, kc, ske, pke, spke) ∈ keys ∧ spke < sencs(k)
then output ↓ else

– for EncH: spke := spke + 1; output c← Epke(m);

– for Encsim,H: spke := spke + 1; output c ← Epke(msim ,len(m)); add
(m, pke, c) to ciphers.

• On input (decrypt, pke, c) with pke, c ∈ Σ+ (note that pke is used as a
designator of the desired private key): If ¬∃kc, ske, spke : (u, kc, ske,

pke, spke) ∈ keys then output ↓ else

– for EncH: output m := Dske(c);

– for Encsim,H: If ∃m : (m, pke, c) ∈ ciphers then output m else

output m := Dske(c).

3

In this definition, S̄enc,H = ∅, i.e., the adversary is not connected with the

correct machines except via or in the place of H. Both EncH and Encsim,H

limit the capability to decrypt: If (u, kc, ske, pke, 0) was added to keys due

to an input (generate) at port inenc,u?, then (decrypt, pke, c) has an effect only
if it is entered at the same port.

Similar to the ideal system, we can also state the following lemma:

Lemma 3.4 The systems Sysenc,real
n,skeys ,sencs

and Sysenc,sim
n,skeys ,sencs

are weakly

polynomial-time. 2
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Theorem 3.1 (Reactive Multi-user Public-key Encryption) For all
n ∈

�
, skeys , sencs ∈

�
[x], we have

Sysenc,real
n,skeys ,sencs

≥f,poly
sec Sysenc,sim

n,skeys ,sencs

for the canonical mapping f , provided the encryption scheme used is secure

(Definition 3.2). This holds even with blackbox simulatability. 2

Proof. Let n, skeys , sencs and H and thus one structure of one system be fixed.

We always set A2 = A1 =: A; this is clearly a blackbox construction. The
proof is a hybrid argument as first used in [26], i.e., we construct intermediate

systems that differ only in one encryption each.
For every k ∈

�
let Ik := ({1, . . . , skeys(k)} × {1, . . . , sencs(k)}) ∪ {α},

let <k be the lexicographic order on Ik \ {α}, and α ≤k t for all t ∈ Ik.
Let predk(t) be the predecessor of t ∈ Ik relative to <k and ω(k) :=

(skeys(k), sencs(k)).

For every k ∈
�

and t ∈ Ik, we define a hybrid machine Enck,t,H. It
is like Encsim,H with fixed initial input 1k, except whenever Encsim,H carries

out c ← Epke(msim ,len(m)): Let t′ := (kc, spke) for the values kc, spke at that
moment.

• If t′ ≤k t, it sets c← Epke(m) like EncH;

• if t′ >k t, it sets c← Epke(msim ,len(m)) like Encsim,H.

Clearly, each Enck,α,H works like Encsim,H on input 1k. Furthermore,

Enck,ω(k),H works like EncH on input 1k: EncH and Enck,ω(k),H produce identi-
cal outputs for inputs (generate) and (encrypt, pke, m). Now consider an in-

put (decrypt, pke, c) at inenc,u? such that ∃kc, ske, spke : (u, kc, ske, pke, spke)
∈ keys (otherwise both output ↓). If there is no tuple (m, pke, c) in ciphers,

both output Dske(c). If there is, then c has been generated by Enck,ω(k),H as
Epke(m). Thus Dske(c) = m, and both machines output m.

Now assume for contradiction that the theorem is wrong for the given
parameters and for polynomial-time machines A and H. Let confreal :=

({EncH}, Senc,H, H, A) and confsim := ({Encsim,H}, Senc,H, H, A). Furthermore,
for all k, t, let collk,t be the collection {Enck,t,H, H, A}, where the initial inputs

are always 1k. Thus we assume view confreal(H) 6≈poly view confsim(H), and this

implies
(view collk,ω(k)

(H))k∈ � 6≈poly (view collk,α
(H))k∈ � .
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We abbreviate viewk,t := view collk,t
(H). Hence there exists a distinguisher

Dis and p ∈
�
[x] such that for all k in an infinite set K ⊆

�
,

|P (Dis(viewk,ω(k)) = 1)− P (Dis(viewk,α) = 1)| >
1

p(k)
.

(For brevity, we always omit the input 1k of Dis.)
We construct two almost identical adversaries Aenc+ and Aenc− on the

encryption scheme; we write Aenc where statements hold for both. On input
1k, Aenc randomly selects t ∈R Ik \ {α}, say, t = (kc, s′) and receives a public

key pke from the decryptor machine Dec. Then it simulates coll k,t with the
following exceptions:

• If H makes the kc-th input (generate), say at port inenc,u?, then Aenc

only adds (u, kc, 0, pke, 0) to keys. Instead of operations m := Dske(c)
corresponding to this entry (identified by pke), it queries Dec.

• If H makes an input (encrypt, pke, m) which gets the index t = (kc, s′),

i.e., Aenc finds the entry (u, kc, 0, pke, s′ − 1) in keys, then Aenc sends
(enc, m0, m1) := (enc, m, msim ,len(m)) to Dec. Recall that Dec flips a bit

b ∈R {0, 1} and returns c← Epke(mb). Aenc adds (m, pke, c) to ciphers.

At the end, Aenc runs Dis on the resulting view of H, which yields a bit b∗k.

Aenc+ outputs b∗k, whereas Aenc− outputs 1− b∗k.
First, Aenc is indeed polynomial-time. (Given the polynomial runtime

bounds on A and H, one easily sees that there is a joint polynomial bound

(in k) on the runtime of all collections collk,t.) Secondly, Aenc never asks Dec

to decrypt the ciphertext c from Dec (which Dec would refuse), because Aenc

will find (m, pke, c) in ciphers and output m. Thus the simulation of coll k,t

is perfect.

Let view
(b)
k denote the random variable of the view of H in Aenc for pa-

rameter k and a specific bit b. This is well-defined because b is chosen inde-

pendently. For b = 0 the simulated run is generated like a run of coll k,t and
for b = 1 like a run of collk,predk(t). With w(k) := skeys(k)sencs(k) we get:

P (Dis(view
(0)
k ) = 1) =

1

w(k)

∑

t∈Ik\{α}

P (Dis(viewk,t) = 1),

P (Dis(view
(1)
k ) = 1) =

1

w(k)

∑

t∈Ik\{α}

P (Dis(viewk,predk(t)) = 1).

46



For all k ∈ K, this implies

|P (Dis(view
(0)
k ) = 1)− P (Dis(view

(1)
k ) = 1)|

=
1

w(k)
|P (Dis(viewk,ω(k)) = 1)− P (Dis(viewk,α) = 1)|

>
1

w(k)p(k)
.

Thus

P (b∗k = b) = P (b = 0 ∧ Dis(view
(b)
k ) = 0) + P (b = 1 ∧ Dis(view

(b)
k ) = 1)

=
1

2
(P (Dis(view

(0)
k ) = 0) + P (Dis(view

(1)
k ) = 1))

=
1

2
+

1

2
(P (Dis(view

(1)
k ) = 1)− P (Dis(view

(0)
k ) = 1)).

This implies for all k ∈ K

P (b∗k = b) >
1

2
+

1

2w(k)p(k)
or P (b∗k = b) <

1

2
−

1

2w(k)p(k)
.

Thus the success probability of either Aenc+ or Aenc− is larger than 1/2 +
1/(2w(k)p(k)) for all k in an infinite subset K′ ⊆ K. This is the desired

contradiction to the security of the encryption system.

3.4 Security of the Real System

We show that Scheme 3.2 is at least as secure as the ideal Scheme 3.1.

Theorem 3.2 (Secure Message Transmission) For all n ∈
�

and

L, T ∈
�
[x], Sys secmsg,real

n,L,T ≥f,poly
sec Sys secmsg,ideal

n,L for the canonical mapping f
from Definition 2.19, provided the encryption and signature schemes used

are secure (Definitions 3.2 and 3.4). This holds even with blackbox simulata-
bility. 2

We prove this theorem in the following steps: In Part A we rewrite the
real system to use a reactive encryption system Sys enc,real

n,skeys ,sencs
from Scheme 3.3

instead of performing the original encryption algorithms. This gives an in-
termediate system Sys secmsg,Enc

n,L,T , and we show that

Sys secmsg,real
n,L,T ≥perf

sec Sys secmsg,Enc
n,L,T .
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In Part B, we replace the real reactive encryption system by the ideal one to
get a new system Sys secmsg,Encsim

n,L,T . With the composition theorem, we obtain

Sys secmsg,Enc
n,L,T ≥poly

sec Sys secmsg,Encsim
n,L,T .

In Part C we define a simulator SimH that uses an adversary from a config-
uration of Sys secmsg,Encsim

n,L,T as a blackbox, resulting in a configuration of the

ideal system Sys secmsg,ideal
n,L . We show that this simulation is correct, i.e., that

Sys secmsg,Encsim
n,L,T ≥poly

sec Sys secmsg,ideal
n,L .

Theorem 3.2 follows with the transitivity of ≥sec (Lemma 2.7) and
Lemma 2.6.

3.4.1 Rewriting the Real System

We first define the intermediate system Sys secmsg,Enc
n,L,T . Its structures are

of the form (M̂ ′
H, SH) with M̂ ′

H = {EncH} ∪ {M
′
u,H|u ∈ H}, see Figure 3.2,

where EncH is the machine from Sysenc,real
n,skeys ,sencs

with n as in the overall system

and skeys(k) := n, sencs(k) := nT (k).
Each machine M′

u,H equals Mu,H with the following modifications:

• It has additional ports inenc,u !, inenc,u
/!, outenc,u? to connect to EncH.

• In “Send initialization.” Instead of calling genE, output (generate) at

inenc,u ! and wait for a result of the correct length for a public key at
outenc,u?. (More precisely enter a state (wait, init) where all other inputs

are ignored. As one easily sees from the scheduling that only this input

can arrive next, we treat the wait state together with the previous
state; also in the following cases. tcu is not incremented after a wait

state.) Use this result as pkeu . In initu,u store pkeu instead of skeu . As
a second change, this transition, except for the final sending of keys, is

also carried out if tcu was T (k)− 1. (This gives greater similarity with
the state in THH below.)

• In “Send.” If v ∈ H, instead of the computation of c, compute sig ←
signsksu ,scu

(u, m, v) and output (encrypt, pkev , sig) at inenc,u !. Wait for a
result of the correct length for a corresponding ciphertext at outenc,u?
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Figure 3.2: Real system rewritten with encryption subsystem (standard
case).

and use it as c. This transition, except for the final sending of c, is also

carried out if tcu was T (k)− 1.

• In “Receive.” Instead of Step a) of parsing, output (decrypt, pkeu , c) at

inenc,u !. Wait for a result of at most len(c) (or false) at outenc,u? and use
it as sig.

As this intermediate system is only used in the proof, it is no problem that
M′

u,H makes an explicit distinction using H. Each machine M′
u,H only accepts

a fixed polynomial number of inputs, verifies a polynomial length bound for
each, and executes polynomial-time algorithms. Hence the following lemma

holds.

Lemma 3.5 The machines M′
u,H are polynomial-time. 2

The views of A and H in a configuration (M̂H, SH, H, A) and (M̂ ′
H, SH,

H, A) are identical (perfectly indistinguishable), because the actions of EncH
on the given inputs are precisely what Mu,H would have done at this point,

and A can neither observe nor influence the interaction between EncH and
M′

u,H. In particular skeys(k) = n is not exceeded because each Mu,H inputs

(generate) at most once, controlled by initu,u, and sencs(k) = nT (k) is not
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exceeded for any key because each Mu,H inputs (encrypt, . . .) at most T (k)
times, controlled by tcu . Thus we have

Sys secmsg,real
n,L,T ≥perf

sec Sys secmsg,Enc
n,L,T .

3.4.2 Replacing the Encryption System

In Sys secmsg,Enc
n,L,T , we want to replace each machine EncH by Encsim,H to get

a new system Sys secmsg,Encsim
n,L,T .

We consider Sys secmsg,Enc
n,L,T as a composition of Sys0 := Sysenc,real

n,n,nT and a
system Sys1 that is naturally defined as the structures without EncH: The

specified ports are those of Sys secmsg,real
n,L,T plus the low-level complements of

the ports of EncH. Then the conditions of Definition 2.22 are fulfilled.

As each machine Encsim,H has the same ports as EncH, the definition of
Sys secmsg,Encsim

n,L,T as a composition of Sys ′0 := Sysenc,sim
n,n,nT and the same Sys1 is

clear and the preconditions of the composition theorem, Theorem 2.1, are
fulfilled (in particular by Lemma 3.5). Hence Theorem 3.1 and Theorem 2.1

imply Sys secmsg,Enc
n,L,T ≥poly

sec Sys secmsg,Encsim
n,L,T (again with blackbox simulatability).

3.4.3 Simulator

It remains to be shown that Sys secmsg,Encsim
n,L,T ≥poly

sec Sys secmsg,ideal
n,L . Intuitively,

one remaining aspect is to show that the real messages m, which are still

inputs to Encsim,H, but which are not output by THH, are indeed not needed.
This is a perfectly indistinguishable rewriting. The other aspect is to show

that the use of signatures guarantees authenticity as specified in the ideal
system.

We construct SimH as the combination of several machines, see Figure 3.3.
It uses the given A as a submachine without any port renaming. (Although

all figures show H as using all the specified ports, the proof is general.)

• M∗
u,H, for u ∈ H, equals M′

u,H with the following modifications:

– The ports inu? and outu ! are renamed into to advu?, from advu !.

– It has a port from advu
/! even if the original system is not localized,

and outputs 1 there for every output at from advu !.
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Figure 3.3: Simulator for secure message transmission.

– On input (send blindly, i, l, v) at to advu? with v ∈ H and i ≤ T (k),
behave like M′

u,H on input (send, m, v) for a message m with

len(m) = l (including the remaining domain checks), but in-
stead of computing sig ← signsksu ,scu

(u, m, v) compute only the

length l∗ of any such sig using the algorithm sig len. Output
(encrypt blindly, pkev , (u, i, v), l∗) at inenc,u !. Then wait and con-

tinue like M′
u,H.

– In “receive”, when getting a result at outenc,u?: If it is of the form

(decrypted, sig), treat it as M′
u,H treats sig . If it is of the form

(decrypted blindly, (v′, i, u′)) with v′ = v, u′ = u, and i ≤ T (k),

output (receive blindly, v, i) at from advu !.

• Enc∗H equals Encsim,H with the following modifications:

– An array blind ciphers replaces ciphers.

– Instead of inputs (encrypt, . . .), it accepts inputs (encrypt blindly,

pke, mid , l∗) with pke,mid ∈ Σ+, l∗ ∈
�
, and pke of correct

length. Here mid is a message identifier. If it finds the desired
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tuple in keys (otherwise the result is ↓), then { spke := spke + 1;
output c← Epke(msim ,l∗); add (mid , pke, c) to blind ciphers }.

– In “decrypt”, the special part for Encsim,H is replaced by: If ∃mid :
(mid , pke, c) ∈ blind ciphers then output (decrypted blindly,mid)

else { m := Dske(c); output (decrypted, m) }.

Similar to the previous systems, the following lemma holds:

Lemma 3.6 All machines M∗
u,H are polynomial-time and Enc∗H is weakly

polynomial-time. 2

3.4.4 Overall Proof of the Correctness of the Simulator

To prove the correctness of this simulator, we have to compare every

configuration confsr := (M̂ ′′
H, SH, H, A) ∈ Conf(Sys secmsg,Encsim

n,L,T ) with confid :=
({THH}, SH, H, comb({SimH, A})). We call them semi-real and ideal configu-

ration. The overall idea is to define a mapping φ from the runs of confsr to

the runs of confid, except for negligible subsets on both sides, which we call
error sets. φ respects probabilities, and the views of A and H in runs ρ and

φ(ρ) are equal. This implies the desired computational indistinguishability.
In our case, we can define φ state-wise, and only for states before and

after steps of H and A because we only consider the views of these machines.
In other words, we consider the combination of H and A, interacting with the

combination of all other machines (including SimH in confid); by Lemma 2.2
this does not change the views. We show that φ(δsr(σsr)) = δid(φ(σsr)) for all

states σsr reachable in confsr, except for the error sets. Here δsr and δid denote
the overall probabilistic transition functions. The error sets will consist of

the runs where the adversary successfully forges a signature.
Mapping φ. Let a state σsr of confsr be given; we define the components

of σid := φ(σsr). Large parts of the mapping are trivial:

• The states of H and A are mapped identically.

• The states of all buffers with the same name in both systems are

mapped identically, and so is the scheduled port.
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• The remaining buffers in σid are always empty and their ports not
scheduled. (Recall that we only map states before or after steps of H

or A.)

• Security parameters are mapped identically and not mentioned again.

It remains to map the joint states of M′
u,H for all u ∈ H and Encsim,H to

states of THH and SimH (which consists of the machines M∗
u,H and Enc∗H).

• Transaction counters:

– Each counter tcu of a machine M∗
u,H equals that in M′

u,H.

– The value stopped∗
u in THH is 1 if tcu = T (k), else 0.

• Key-related variables:

– Each array init •,u of a machine M∗
u,H equals that in M′

u,H.

– The array init∗ of THH is derived from the arrays init•,u of the
machines M′

u,H: We set init∗v,u := 1 whenever initv,u 6= (), else

init∗v,u := 0.

– The counter kc and the list keys of Enc∗H equal those in Encsim,H.

• Message-related variables:

– Each counter scu of a machine M∗
u,H equals that in M′

u,H.

– The array deliver ∗ of THH and the list blind ciphers of Enc∗H are

derived from ciphers of Encsim,H: Each entry e := ciphers[j] 6= ↓
is of the form e = (sig, pke, c) and sig of the form ((u, m, v), sig ′)

with u, v ∈ H. (This is shown as Invariant 4 below.) Given
ciphers, let indu,v(j) denote the number of entries up to (and in-

cluding) ciphers[j] with the given values u, v. Hence for each such
entry e we can set i := indu,v(j) and

∗ blind ciphers[j] := ((u, i, v), pke, c),

∗ deliver ∗
u,v [i ] = m.
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3.5 Detailed Proof of Correct Simulation

We have to show that the mapping φ has the properties required above.

For this, we first define some invariants. Then we prove them together with
the property φ(δsr(σsr)) = δid(φ(σsr)) (outside the error sets) by considering

each type of transition of the combination of machines without A and H. In
that proof, states σsr of confsr and σid := φ(σid) are given, and all component

names refer to these states. Finally, we show that the error sets are indeed
negligible.

3.5.1 Invariants

The first four invariants are formulas valid in all states σsr reachable in
confsr (before or after steps of H or A). The last one is a run invariant of

confid.

1. Buffer emptiness. All buffers
�

inenc,u and
�

outenc,u are empty.

2. Counters. Let u ∈ H and j := size(ciphers). Then scu ≤ tcu ≤ T (k),

and indu,v(j) ≤ tcu for all v.

3. Key and init consistency. Each list initu,u with u ∈ H is empty or a
pair, which we then call (sksu , pkeu). For u 6= v and v ∈ H, each list

initu,v with u ∈ M and each message in a buffer
�

autu,v with u ∈ H
is empty or a pair, which we then call (pksu , pkeu). (The names are

ambiguous, but the index v of the buffer or machine meant will be
clear from the context.) If u ∈ H, then pksu forms a correct signature

key pair with sksu (in particular, then initu,u 6= ∅), and pkeu is the
same as in initu,u and also occurs in keys of EncSim,H with the given u

and a correct decryption key.

4. Ciphertext format. Each entry in ciphers is of the form (sig, pke, c),
where sig is of the form ((u, m, v), sig ′) with u, v ∈ H and a correct

signature with sksu (from initu,u).

5. Signatures. The only usage that M∗
u,H makes of sksu is to sign triples

(u, m, v) with the given u and v ∈ A, and with strictly increasing
counter values.
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3.5.2 Possible inputs and counters

In confsr, an input to the combination of machines without H and A is

always made to a machine M′
u,H at inu? or a network port, i.e., autv ,u? or

netav ,u?.

If already tcu = T (k), then M′
u,H is in a final state and does nothing.

In confid, an input at a network port goes to M∗
u,H, which is in the same

state by φ and does nothing either. An input at inu? goes to THH, where
stopped∗

u = 1 by φ. In this case, THH neither changes its state nor makes

outputs. Thus φ and the invariants remain satisfied. Hence from now on we
assume tcu < T (k) before the transition.

3.5.3 Send Initialization

Upon input (init) at inu?, M′
u,H increments tcu and tests if now tcu = T (k).

Case 1: Still tcu < T (k). Then both M′
u,H and THH test whether

initu,u/init∗u,u signals a previous initialization. φ ensures identical results.

If yes, both do nothing. Otherwise, in confsr, M′
u,H outputs (generate) at

inenc,u !, scheduling it immediately. In confid, THH sets init∗u,u := 1 and sends

(init) to M∗
u,H, again scheduling this input at once. As φ gives M∗

u,H the same
state as M′

u,H, M∗
u,H behaves exactly like M′

u,H.

Hence both Encsim,H and Enc∗H obtain an input (generate) at inenc,u?. They
behave identically for it and always make an output pke and schedule it. (We

showed in Part A (Section 3.4.1) that skeys(k) = n is not exceeded.) Hence
M′

u,H and M∗
u,H switch again with this input. Both use it as pkeu , store it

within initu,u, and output (pksu , pkeu) at all ports autu,v !. They make no
scheduling output, hence control returns to A.

Case 2: tcu = T (k) after the increment. Then both configurations pro-
ceed as before except that M′

u,H and M∗
u,H, instead of outputting (pksu , pkeu),

output stop at outu ! and from advu !, respectively. Then THH sets stopped ∗
u :=

1 and also outputs stop at outu !.

Invariants 1, 2 and 3 could be affected, but clearly remain satisfied. For φ,

only the counters and key-related variables can be affected, and the relations
clearly remain satisfied.
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3.5.4 Receive Initialization

Upon input (pksv , pkev) at autv ,u?, both M′
u,H and M∗

u,H increment tcu and

test if now tcu = T (k). If yes, both only output stop at outu ! and from advu !,
respectively. Then THH sets stopped ∗

u := 1 and also outputs stop at outu !.

Otherwise, they test that the keys are of correct length and init v,u = ().
If not, they do nothing. If yes, they set init v,u := (pksv , pkev) and output

(init, v). As M∗
u,H schedules this output, THH tests if init∗v,u = 0; this is true

by φ. If v ∈ H it also tests init ∗v,v = 1. By φ, this is equivalent to initv,v 6= (),

and by Invariant 3, this follows from the existence of pksv in the buffer
�

autv ,u

in σsr. Thus THH accepts this input, sets init∗v,u := 1, and outputs (init, v).

Invariants 2 and 3 could be affected, but remain satisfied. For the case
v ∈ H this is true because the keys now in init v,u were already in

�

autv ,u .

Only the counter- and key-related parts of φ are affected, and they clearly
remain satisfied.

3.5.5 Send to Honest Party

Upon input (send, m, v) at inu? with u, v ∈ H, M′
u,H increments tcu and

tests if now tcu = T (k).

Case 1: Still tcu < T (k). Then M′
u,H and THH first test the domains of m

and v and consider init/init∗, with identical results (by φ and Invariant 3).

Now assume they continue.
In confsr, M′

u,H increments scu and computes a signature sig for the mes-

sage (u, m, v), outputs (encrypt, pkev , sig) at inenc,u !, and schedules it. In

confid, THH adds m to deliver ∗
u,v; let inew denote its index. It outputs and

schedules (send blindly, inew , l, v) for l := len(m). By φ, M∗
u,H starts on this

input in the same state as M′
u,H. It makes the same tests and counter updates

as M′
u,H and additionally tests v ∈ H, which is true here, and inew ≤ T (k),

which is true by Invariant 2 and the derivation of deliver ∗ with φ. Then
it computes a value l∗ which by definition equals len(sig), and outputs and

schedules (encrypt blindly, pkev , (u, inew , v), l∗).
Now Encsim,H and Enc∗H switch with these encryption requests. By Invari-

ant 3 and φ, both find an entry for pkev , and by Part A, sencs(k) = nT (k)
is not exceeded for it. Hence Encsim,H generates c ← Epkev

(msim ,len(sig)) and

stores (sig, pkev , c) in ciphers. Enc∗H generates c ← Epkev
(msim ,l∗) and stores
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((u, inew , v), pkev , c) in blind ciphers. Hence c has precisely the same distri-
bution. Both output and schedule c. Finally, M′

u,H and M∗
u,H output c at

netu,v !. Control returns to A.

Case 2: tcu = T (k) after the increment. Both configurations proceed as
before except that M′

u,H and M∗
u,H, instead of outputting c, output stop at

outu ! and from advu !, respectively. Then THH sets stopped∗
u := 1 and also

outputs stop at outu !.

Invariants 1, 2, 4 and 5 could be affected, but 1 and 4 clearly remain
true. For Invariant 2, note that at most one entry (sig , pkev , c) is added

to ciphers, which only increments indu,v(j), while tcu was also incremented.
For Invariant 5, note that M∗

u,H makes no signature here. As to φ, the

only non-trivial part is the mapping of the new ciphers to blind ciphers
and deliver ∗: Let j := size(ciphers) before this step and iold := indu,v[j].

Then blind ciphers was also of size j and deliver ∗
u,v of size iold (by φ), and

thus inew = iold + 1. The new entry is ciphers[j + 1], and φ maps it to

blind ciphers[j + 1] := ((u, inew , v), pkev , c) and deliver ∗
u,v [inew ] = m. These

are indeed the new entries in blind ciphers and deliver ∗
u,v .

3.5.6 Send to Dishonest Party

Upon input (send, m, v) at inu? with u ∈ H, v ∈ A, M′
u,H increments tcu

and tests if now tcu = T (k).
Case 1: Still tcu < T (k). Then M′

u,H and THH first test the domains of

m and v and consider init/init∗, with identical results. Now assume they
proceed. THH outputs and schedules (send, m, v). Then M∗

u,H acts exactly

like M′
u,H. Both increase scu , compute c ← Epkev

(signsksu ,scu
(u, m, v)), and

output it at netu,v !. Control returns to A.

Case 2: tcu = T (k) after the increment. Then M′
u,H and M∗

u,H output
stop at outu ! and from advu ! immediately. THH sets stopped ∗

u := 1 and also

outputs stop at outu !.
Invariants 2 and 5 could be affected, but clearly remain satisfied. As to

φ, only counters are modified and in a consistent way.
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3.5.7 Receive from Honest Party

Upon input c at netav ,u? with u, v ∈ H, both M′
u,H and M∗

u,H increment

tcu and test if now tcu = T (k). If yes, both only output stop at outu ! and
from advu !, respectively. Then THH sets stopped∗

u := 1 and also outputs stop

at outu !.
Otherwise M′

u,H and M∗
u,H first test the length of c and the contents of

init , with the same results. If they continue, they both start to parse c by
outputting (decrypt, pkeu , c) at inenc,u ! and scheduling it.

Both Encsim,H and Enc∗H first search for an entry (u, ·, skeu, pkeu , ·) ∈ keys
with some skeu ; they find it by Invariant 3 (and φ). Then they search ciphers

and blind ciphers, respectively, for an entry (x , pkeu , c), where x is now called
sig in Encsim,H and mid in Enc∗H. By φ, either both succeed with the same

index j, or neither.

• If no such entry is found (intuitively, c was generated by the adver-

sary), both set sig := Dskeu
(c). Encsim,H outputs sig and Enc∗H outputs

(decrypted, sig), and both schedule this output. Now M′
u,H and M∗

u,H

continue parsing in the same way: sig does not exceed the length bound
by Definition 3.1. Thus they test that sig 6= false, set m′ := testpksv (sig)

and try to write m′ as (v, m, u) for the given u, v and a message m with

len(m) ≤ L(k). If this does not succeed, they abort and control re-
turns to A. If it succeeds, the simulation would fail, and we put the

run of confid into a set Forgeriesv ,k (where k is the security parameter).
We call sig the “designated signature” for this run. Given a run, one

can easily verify whether this case occurs. By Invariant 5, M∗
v,H never

signed m′ because u 6∈ A.

• Now assume that such entries are found. By Invariant 4, sig is of the
form sig = ((v′, m, u′), sig ′) for some m and v′, u′ ∈ H and a correct

signature with sksv ′. By φ, we have mid = (v′, i, u′) with i = indv′,u′(j)
and deliver ∗

v ′,u′ [i ] = m. Finding these entries, Encsim,H outputs sig and

Enc∗H outputs (decrypted blindly,mid). Both schedule these outputs.

On input sig, M′
u,H continues parsing as in the previous case. Hence

it outputs (receive, v, m) iff v′ = v and u′ = u. (With Invariant 3, one

sees that sig passes the test with M′
u,H’s variable pksv .)
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On input (decrypted blindly,mid), M∗
u,H outputs and schedules

(receive blindly, v, i) iff v′ = v and u′ = u; the condition i ≤ T (k) is

fulfilled because of i = indv′,u′(j) and Invariant 2 (Otherwise both abort

and control returns to A.) Now THH verifies stopped ∗
v = 0, init∗v,v = 1,

and init∗u,v = 1, which is all true by φ. It therefore retrieves deliver ∗
v ,u[i ],

which is m, and also outputs (receive, v, m).

Only counters are modified, and Invariant 2 and φ clearly remain satisfied.

3.5.8 Receive from Dishonest Party

On input c at netav ,u? for u ∈ H, v ∈ A, everything proceeds as in the

case v ∈ H until both or neither of Encsim,H and Enc∗H have found the desired
entry in ciphers and blind ciphers.

• If no entry is found, decryption and parsing continues as above. If it is

successful, M′
u,H and M∗

u,H output (receive, v, m), and M∗
u,H schedules it.

THH verifies that v ∈ A, len(m) ≤ L(k), which succeeds by the tests
in M∗

u,H, and considers stopped∗ and init∗, which succeeds by φ. Then

it also outputs (receive, v, m).

• If such entries are found, Invariant 4 implies that sig is a pair
((v′, m, u′), sig ′) with v′ ∈ H, and by φ, mid is a triple (v′, i, u′) with

this v′. Thus parsing in both M′
u,H and M∗

u,H fails because v ∈ A and
thus v′ 6= v. They abort and control returns to A.

Only counters are modified, and Invariant 2 and φ clearly remain satisfied.

3.5.9 Final Reduction

It remains to be shown that the error sets are negligible. As φ retains
probabilities where it is defined, the error sets have the same probabilities

in both configurations, and it suffices to consider confid. There, the error set
for each k is the union of the sets Forgeriesv ,k with v ∈ M. In each run

in Forgeriesv ,k , the adversary has produced a signature with a key sksv of

a correct machine M∗
v,H under a message that this machine had not signed.

Hence the overall statement follows from the security of the signature scheme.
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More precisely, the proof is a standard reduction: It suffices to show that
the sequence of probabilities of the sets (Forgeriesv ,k)k∈ � is negligible for each

v ∈ M (Definition 2.12), because NEGL is closed under finite addition.

Assume the contrary for a certain v. We then construct an adversary Asig

against the signer machine SigT (recall Definition 3.4). On input a public

key pks, it simulates confid with pks as pksv (i.e., instead of generating pksv

in M∗
v,H) and using the signer machine SigT for all signatures with the now

unknown sksv . By Invariant 5, signing is the only usage of sksv , and SigT

always answers correctly by Lemma 3.2 (skipping signatures) and because scv

cannot grow beyond T (k) by Invariant 2 Asig verifies whether the run belongs
to Forgeriesv ,k and if yes, outputs the designated signature. By Section 3.5.7

this is efficiently possible, and the designated signature is a successful forgery
in the sense of Definition 3.4 because Asig did not have to ask SigT to sign

this message. Hence the success probability of Asig for a security parameter
k is precisely the probability of Forgeriesv ,k .

Moreover, Asig is polynomial-time: By Lemmas 3.6 and 2.2f), the combi-
nation of all machines M∗

u,H and Enc∗H is polynomial-time. The combination

of this with A and H is also polynomial-time by Lemma 2.2e), and finally

the combination with THH by Lemmas 3.1 and 2.2f). By associativity this
implies that the simulation of confid is polynomial-time.
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4 Faithfully Implementing Protocols

4.1 Introduction

General security models such as the ones presented in Chapter 2 and in
the prior deliverable D4 [4] offer a rigorously defined foundation for specifying

and proving the security of cryptographic protocols. This has been exploited
— by providing a corresponding formal security proof — to achieve high

confidence in several protocols [45, 7, 46] and more provably secure protocols
are expected to follow. It is only a question of time until those protocols will

be implemented and deployed.

However, it is by no means an easy task to implement such provably se-
cure protocols in a way which retains their security properties in the real

world.1 Given our limited knowledge about the real world, all models inher-
ently have some abstractions which only approximate and idealize the reality.

Furthermore, a model has to make tradeoffs between, on the one hand, be-
ing highly detailed and close to reality and, on the other hand, keeping the

model’s complexity manageable. The resulting idealizations leave a crucial
gap between models and the real world: idealizations restrict the capabilities

of an attacker and rule out certain classes of attacks in the model which can
be serious sources of security flaws in the real world. In fact, most successful

attacks against cryptographic systems identify and exploit weaknesses of the
implementation.

In this chapter, we identify this gap for the synchronous as well as the
asynchronous model defined in the earlier deliverable [4] and the present

deliverable, respectively. We start in Section 4.2 by analyzing how the model

and the real world differ and assess the impact of each identified abstraction.
In Section 4.3 we discuss possible approaches for closing the gap.

4.2 Model Abstractions and Impact on Real-World
Security

Let us now identify and inspect the abstractions in these models. In par-
ticular, we should compare each identified abstraction with the real-world

1In the following, we mean by “real world”the world as ruled by the laws of physics
and experienced by human users.
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and discuss its impact on the security of a real-world implementation. As
we will see, several of these abstractions lead to subtle yet highly relevant

security issues and pose special restrictions on an implementation. Thus,

an implementor has to take special care to accurately respect these abstrac-
tions in an implementation, e.g., in the common runtime environment and

operating systems.
We can roughly classify the various abstractions into following categories:

(1) computation model, (2) communication model, and (3) synchronization
and time. In the following sections, we will take a closer look at each of the

aforementioned categories in turn. For each category, we can split the dis-
cussion orthogonally into two classes: (a) properties of (supposedly) correct

machines, and (b) adversary capabilities. Obviously, as implementors we can
only control the class (a) but not (b). However, the discussion of (b) is im-

portant as well as it shows us further implicit assumptions and limitations
of our model.

As the term “machine” has many connotations, it can be quite mislead-
ing. For clarity, we will use the following convention in the sequel: A machine

always corresponds to a specification in the previously described model. The

implementation of a machine is called a component. A host denotes a run-
time environment where several components can be colocated. Limiting the

discussion primarily to standard cryptographic systems, we assume that a
host is a stand-alone computer under a single administrative domain, i.e., all

components in the same host trust each other in respect to the fulfillment of
the corresponding specifications.

4.2.1 Computation Model

The computational aspects of machines are represented by I/O Automata
and can be easily realized by modern computers. However, there are some

properties of (honest) machines which deserve special attention.

4.2.1.1 Atomicity of Transitions

Transitions of automata are modeled as being atomic, i.e., either they
are performed completely or not at all. In real-world runtime environments

or operating systems with interrupts and multiprocessing, atomicity of tran-
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sitions cannot be assumed without further measures. This bears two kinds
of problems: First, in case of dynamic corruptions, it is possible that inter-

mediary states leak certain information to the attacker that would not have

been leaked by states which the machine reaches after complete transitions.2

Second, a consequence of transitions being not atomic in the real world is

that it may change the timing characteristics of implementations.
As the implications of potential timing channel are discussed below in

Section 4.2.4 in more details, we will focus in the following only on the
leakage of intermediary states. As dynamic corruptions model any accidental

weaknesses in the implementation and operation of a machine, e.g., the loss
of keys in an unprotected backup-tape or the theft of a personal device, there

seems to be neither a reasonable way to restrict dynamic corruptions to idle
components in the real world nor to rule out dynamic corruptions completely.

Therefore, we analyze the impact of leaking intermediary states in more
detail: Leakage of an intermediary state to an attacker could be a security

thread if it contains information which the attacker cannot compute from the
state reached after the transition is completely executed: one example may

be a transition in which a corruptible machine randomly chooses a value x

from a large domain, computes the image y = f(x) of x under a one-way
function f and finally deletes x. However, a corruption during a transition is

equivalent from the viewpoint of an external observer to an adversary which
corrupts the machine immediately before that transition and then simulates

the proper operation of the machine up to the actual time of corruption. As
the latter case is handled by the model, the leakage of intermediary states

does not have to be of deeper concern.

4.2.1.2 Enforcement of Interfaces

The models restrict access to machines to a well-defined interface as given

by the machine’s definition. In particular, this means that machines have no
direct access to the internal state of other machines, not even to states of

sub-machines.

Implementations based on today’s standard programming models and

2Recall that dynamic corruptions are modeled as sending the full internal state to the
attacker and giving full control to him. Thus, the “implicit” atomicity-assumption implies
that in the model, in case of corruption, no intermediary states can leak to the adversary.
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operated in the usual runtime-environments do not guarantee this separation
in general. Since (local) sub-machines are commonly realized as sub-function

calls to routines which lie in the same address space, the resulting components

have mutual direct access to their internal states and interfaces are not as
strictly enforced as required by security proofs in these models.

To assess the impact of this issue, we have to take a look at the security
proofs in the models, especially at the different treatment of correct and

incorrect, i.e., adversary-controlled, machines:

1. Correct machines are assumed to access other machines only through

their interfaces and to be accessible themselves exclusively through
their interface too. Thus, this must be guaranteed in the real-world

implementation of correct machines. This can be ensured by any combi-
nation of physical separation, processor-based memory-protection and

language-based separation [52].

2. Incorrect machines are modeled as one adversary machine. This way of

modeling incorrect machines gives the attacker complete access to all

incorrect machines, even to their internal states. Thus, the interface-
enforcement for these machines is not crucial for the real-world se-

curity. The same holds for dynamically corruptible machines after a
corruption has taken place. Although not directly vital for retaining

the security properties in the real-world,3 the implementation should
ensure interface-enforcement even for components which are allowed to

become corrupted. On the one hand, dynamic corruptions are unde-
sirable and the likelihood of them should be minimized. On the other

hand, some trust-models, e.g., a (n, t)-threshold model which assumes
that out of n servers at most t−1 ever get corrupted, implicitly assume

a certain resistance to dynamic corruptions.

Another closely related issue is discussed in Section 4.2.4 below: even if

interfaces are strictly enforced by the runtime-environment, there can be ad-
ditional real-world channels, which bypass the seemingly enforced interface.

3Any accidental violation of the interface enforcement in the real-model can be modeled
as a corresponding dynamic corruption.
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4.2.1.3 Practicality

A final word to the specification of honest machines and their impact on

the practicality of their implementation. While it is possible to model sys-
tems which are unrealizable in practice, e.g., because they never terminate

or require an unrealistic amount of memory space and computation time,
this does not have an impact on the integrity and confidentiality proper-

ties studied here. However, when we would extend the model to deal also
with (strong) liveness properties, e.g., the guaranteed real-time progress of a

system, one would have to consider also this aspect.

4.2.1.4 Adversary

Let us look now at the computational aspects of adversaries. The partic-

ular type of I/O Automata is polynomially equivalent to (interactive) Turing
machines. According to the classical Church-Turing thesis, this covers the

complete class of computable functions and, therefore, represents a realistic

upper bound on the adversary’s computational capabilities. As a conse-
quence, perfectly secure systems, which guarantee the absence of any adver-

sarial algorithm, do not deserve further attention during implementation.
However, when implementing computationally secure systems, the over-

whelming majority of cryptographic systems, two additional aspects have
to be considered. First, the security is based on the assumption that only

algorithms polynomial in time and space are realizable in practice. While
this looks reasonable today, the advent of new computation models such

as molecular (biological) computing [34] or quantum computing [13] might
prove this assumption to be wrong in the future. However, note that none

of these newer computation models violates the Church-Turing thesis. They
only have the potential to topple aspects of the polynomiality aspects and are

not relevant to perfectly secure systems. Furthermore, the security is often
based on unproven complexity-theoretic assumptions which can turn out to

be wrong regardless of advances in the computational models. Second and

more important in this context, computational proofs are only asymptotic
arguments based on some security parameters, i.e., the security is guaranteed

a priori only for infinitely large security parameters. Obviously, in practice a
particular and finite security parameter must be chosen. It is very important
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that the choice is made conservatively under consideration of the lifetime of
the system and the current state of the art as well as potential future ad-

vances in the cryptanalytical techniques. The interested reader is referred to

Lenstra and Verheul [35] for a reasonable approach on how to safely choose
a security parameter.

4.2.2 Communication Model

Ports and buffer-machines are the models’ abstraction of communication
links between components. This has following impact on the implementation

of honest components.

4.2.2.1 Atomic Communication

Communication is assumed to be atomic, i.e., receiving machines have no

access to parts of the message before it is fully received. In combination with
the fact that the models allow the transfer of arbitrarily long messages, this

assumption does not hold for standard communication mechanisms avail-

able in runtime environments. Fragmentation of large messages into smaller
packets is a common technique in today’s communication protocols. The

adversary may access received fragments of the message before the last frag-
ment was received. It seems that this does not have any negative effect on

the overall security and it is tempting not to implement a corresponding
atomic communication service in the real world. However, it is necessary

to have a closer look at this issue to get firm confidence that non-atomic
communication cannot cause any harm.

4.2.2.2 Messages Clipping

The models assume that inputs to machines are automatically clipped to
a maximum message length. In particular, the machine’s behavior is com-

pletely independent from the message part that goes beyond this length. The

maximum acceptable message length is specified in the machine’s definition
and often depends on the internal state of the machine. It is required to

model memory limitations of a component, preventing real-world security is-

66



sues such as buffer-overflows, and the polynomial-time aspects of machines.
The most critical aspect of this clipping is the fact that this clipping is not

necessarily noticeable by the adversary in the model, yet in the real-world

such an event, e.g., a host runs out of buffer space or stops, might be de-
tectable. While mostly not of harm, some (arguably contrived) examples are

possible where the detection of clipping would lead to insecure implementa-
tions.

4.2.2.3 Topology Unawareness

In the model’s abstract communication there is no notion of topology,
i.e., machines are unaware of the network topology. In the real-world, how-

ever, local (software) connections inside a host are different to LAN or WAN
connections.

4.2.2.4 Connection Types and Reliability

The channel and clocking models determine the properties of the com-

munication links. If the links are neither secure, authentic nor reliable,4 no
problem should arise when implementing the communication links. However,

special care has to be taken when the model assumes one or more of afore-
mentioned properties. For example, one often models communication inside

a logical entity as reliable. In this case, one has to ensure that the adversary
cannot influence the scheduling of the operating system. Similarly, inter-

entity channels labeled authentic or secure require special protection unless
the physical properties of the channel prohibit any adversary access.

4.2.2.5 Adversary

The model allows quite realistically to represent all types of intended
communication channels. Using the channel and clocking model we can also

realistically yet generically model the adversary’s control over the network.

Using the notation of the honest user machine H which can arbitrarily con-

4A channel is considered reliable when the clocking of the channel is performed by an
honest machine.
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nect to the adversary, the model covers also all unintentional communication
between users of a given component and the adversary. However, the real

world bears also the risk of additional unintentional information flows be-

tween the component itself and the adversary, namely covert channels and
side channels. This is not directly covered in the model and is discussed in

more detail in Section 4.2.4 below.

4.2.3 Model Semantics — The Notion of Runs

One of the most important notions in the models is that of a run, which

defines how combinations of several machines act together. The definition
of runs differ strongly between the synchronous model, as described in de-

liverable D4 [4], and the asynchronous model presented in this deliverable.
Therefore, the following discussion is split into a synchronous and an asyn-

chronous part:

4.2.3.1 Asynchronous Model

1. Synchrony Assumptions: Protocols which were proven in the asyn-
chronous model do not require any synchrony assumptions in order to

be secure. Thus, from the security point of view there is no direct
need for the runtime environment to offer special synchrony-services.

When broadening the focus from security goals to other quality-of-
service properties, real-world implementations of asynchronous proto-

cols may make use of synchrony-services offered by the runtime envi-
ronment. If additional services are used in the implementation, the

implementor has to take care that he does not introduce new security
flaws. In particular, time-outs should be used only very carefully, e.g.,

no conclusion of the state of other components can be securely derived
from the occurrence of a time-out without making further assumptions.

2. Scheduling: One of the most characteristic features of the asyn-

chronous model is its scheduling policy, called distributed scheduling :
machines which have been scheduled are allowed to schedule other ma-

chines, normally local sub-machines, themselves. Machines not mod-
eled as being scheduled by any other machine of the system are assumed
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to be scheduled by the attacker.

As long as the scheduling is modeled as being controlled by the at-

tacker, no scheduling policy of the implementation can have negative
effects on the system-security. In other words: from a security point

of view there is no “wrong” way of implementing them. Thus, they
may be implemented arbitrarily, if security (safety) is the only criteria

to judge good implementations. However, when looking at availabil-
ity and liveness properties, additional system-specific requirements on

scheduling and activation will arise. This is not covered by the asyn-
chronous model5 (these ports are just modeled as free clocking ports)

and must be specified and verified by the system-designer outside of
the current model.

Mostly for convenience of modeling and proofs, some machines are

scheduled also by honest machines. In this case, contrary to the case
discussed above, particular scheduling strategies might lead to insecure

systems. Therefore, the implementor has to guarantee that his imple-
mentation complies with such scheduling assumptions encoded in the

model.

3. Concurrency: Concurrency of machines is not part of the asyn-
chronous model: At any time exactly one machine of a configuration is

switched by the run-algorithm. However, concurrency is inherent in the
real world and can only be partly masked by the runtime-environment:

at least concurrency of real world users, e.g., humans, and real world
attackers cannot be prevented by implementations. Possible impacts

of this inherent concurrency deserve further studies in the future.

4.2.3.2 Synchronous Model

1. Synchrony Assumptions: In the synchronous model, one assumes

that all machines are perfectly synchronized and operate in lock step,
i.e., they read inputs and make outputs at fixed points in (absolute!)

time. In fact, the security of many protocols strongly depends on this

5Note that this is not a fault of the system model, but rather inherent due to the
asynchronous nature of the system model, see Chapter 2.
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and break when some honest component receives and processes mes-
sages of a round i after other components have already sent messages

for round i + 1. Therefore, an implementation has to synchronize the

whole distributed system. Achieving this efficiently with quality-of-
service guarantees regarding network latency as well as with security

guarantees seems to be a very difficult task in the face of powerful at-
tackers, arbitrary clock variations and network delays. Also note that

the whole real-world implementation, compromising all modularly com-
posed components of dependent applications, has to be lock-stepped,

not only a simple system implementing a service such as the secure
message transmission shown in the deliverable D4 [4]. As a (severe)

consequence the most dragging component will determine the pace of
the system.

Note that the synchronous model does not allow arbitrary concurrency (all
honest machines are strictly parallel inside a round) and restricts the schedul-

ing of honest machines in respect to the adversary. However, as the deliv-
erable D4 [4] showed that the standard synchronous model is equivalent to

arbitrary interleaving of an arbitrary number of sub-rounds, concurrency and
scheduling seems less of an issue for the synchronous system and is by far

dominated by the impact of the synchrony assumption.

4.2.4 Additional Information-Flows in the Real-World

Security proofs in the models assume a certain connection-structure. The
connection-structure is the explicit model of all channels between components

which the prover considered when proving the system secure. Thus, the
security of systems is only retained if there are no additional channels between

components that should be unconnected. However, it is a well known fact
that in real-world systems there are many possible sources of unintentional

information flows. Secure real-world implementations have to take care that
no additional information-flow becomes possible.

One can distinguish two general types of real-world channel, which may
endanger the practical security of systems, even to those that were proven

secure in one of the models:
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1. A covert channel denotes an information flow mechanism within a sys-
tem that is based on system resources not normally intended for com-

munication. Both sender and receiver deliberately use these system re-

sources to exchange information. The problem of covert channels was
introduced by Lampson in [36] and has been extensively studied since

then. Covert channels can be divided into two classes, namely storage
channels and timing channels. Storage channels misuse shared (sys-

tem) variables or attributes to transmit information from the sender
to the receiver. Timing channels transmit information by varying the

amount of time required for certain tasks.

Generally, covert channels may have a great impact on system secu-
rity. However, in implementations of systems that were proven secure

in the models considered here, their impact is limited. This is quite ob-
vious: covert channels are not established accidentally by the sender,

but only on purpose. When proving security of a system in the general
models, the prover assumes that all incorrect machines are combined in

one attacker machine. This is a strictly stronger attacker model6 and

implies that even an implementation of a secure system in a runtime-
environment which enables covert channels is secure. Thus, we will not

go into the details of how to eliminate covert channels in real-world
implementations.

However, using components which cannot be fully trusted to be cor-

rect in the implementation, e.g., third party “off-the-shelf” components
(GUIs, etc.), may establish covert channels and compromise the secu-

rity of the implementation.

2. The other type of real-world channels is called side channel. The cru-

cial difference to covert channels is that the component which “sends”
information over these channels does not do this intentionally, but is

rather leaking information. This type subsumes channels which allow
for information flow from a correct component to an attacker or vice

versa. In the following we discus different kinds of side channels. Note

that this list cannot be assumed to be complete, because it depends on

6One can regard the incorrect machines which are fully connected with each other to
be a special case of one attacker machine that combines all incorrect machines and over
which one all-quantifies in security proofs.
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the perception of potential attackers and perception may improve with
any progress in the field of natural sciences.7

(a) Timing-Channels: Both, the synchronous and the asynchronous
model abstract partially or completely from time aspects. Thus,

timing-channels are at least assumed to be restricted or even

non-existent in the models. Timing-channels are a priori only
a security-risk for confidentiality-properties. However, by leaking

secrets arbitrary security-properties may be violated. For imple-
mentors, the question is how to implement “absence of (real)-

time” in the real world, or at least hide it from the implementa-
tion: The presence of time in the real world is an inherent differ-

ence to the models discussed here.8 The absence or idealization
of time in the models abstract away the possibility of (certain)

timing-channels, which an attacker can use in the real world to
gain information about the internal state of components [32].

If we assume strict interface enforcement, a realistic channel model
and statistical separation of unrelated components, timing infor-

mation can leave the system only via specified ports and free ports
of a system, i.e., the ports where potential adversaries can gather

information from. For the attacker A being able to measure the be-
havior and timing-properties of a collection of correct and causally

related, i.e., connected, components, there must be a directed cy-
cle of channels leading from A or H 9 via an input port into this

collection and eventually back to H or A. This kind of “syntac-
tic criteria” is necessary for the leakage of information via timing

channels, but obviously not sufficient: the timing characteristics
has additionally to depend on the internal state of the components

in the collection.

7Progress in natural sciences can be understood as a refinement of the “model” called
the real-world, opening new kinds of attacks and real-world channels.

8In the synchronous model there is only a discrete notion of time (each machine needs
one standard unit of time, a so called sub-round, to switch). Thus, time has not been
completely abstracted away. Yet even this idealization of real-time in the real world has
to be emulated securely.

9In the model, we allow arbitrary behavior by H. Therefore, we have to assume the
worst, i.e., that H does whatever helps A to get timing information.
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(b) Simple and Differential Power Channels: An attacker might
be able to derive information from measuring the power consump-

tion of devices [5, 31, 30, 6]. This is an attack which is particularly

successful on trusted devices which are potentially in the complete
(external) control of an adversary, such as smart-cards in an e-cash

system which should protect the bank from the payment system’s
customer. Note that the supposed tamper-resistance of a smart-

card in this example is of no help for this kind of attack!

(c) Electro-magnetic Channels: Similarly to above, an adversary
can also derive information from the electro-magnetic signals em-

anated by usual devices [33, 6, 49, 51], e.g., a display. This is in
particular of concern as it can happen over considerable distance

and does not require the attacker to have control over the device
as usually required in the previous case.

(d) Fault-Injection Channels: Fault injection can be used by an at-

tacker to try to negatively influence the behavior of a component.
Even more surprisingly, fault injection can also lead to information

flows through supposedly innocent error-treatment such as error-
messages on illegal input [15]. A very prominent example is the

(very realistic) attack on SSL described by Bleichenbacher [14].

All of above side and covert channels can be modeled by adaptive ad-

versaries. However, some systems require in their trust model that some
components are unconditionally correct, e.g., by considering only static ad-

versaries. Furthermore, even when tolerating arbitrary adaptive adversaries

it should be our goal to keep the opportunities for corruption to a minimum
such as ones which cannot be excluded by an implementation, e.g., corrup-

tions due to pure luck in unavoidable cryptanalytic attacks or attacks using
“social engineering” of involved humans. Therefore, an implementor has to

exclude such additional information flows as much as possible.

4.3 Closing the Gap: Possible Approaches

In the previous section we have seen that many of the model’s current

abstractions bear subtle security risks for real-world implementations. Let us
now discuss the possible ways to tackle this problem. There are basically two
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main approaches: The first approach is to extend the generality of the models
to make them closer to reality. This will give correspondingly additional

confidence in security proofs. The second approach is to address the issues

in the implementation of the protocols, a less formal yet more practical way
to get faithful abstractions. Let us look now at the different options in more

detail.

4.3.1 Closing the Gap when Proving the Security of Protocols

This approach can be subdivided again into two different strategies:

1. Extend the generality of the underlying system model: This is
the most rigorous and general approach. We may extend the underlying

system model, i.e., the definition of machines and their interaction, by
including additional details of the real world, e.g., real-time clocks and

the various physical means which allow propagation of information.
That is, we drop abstractions and idealizations such that the models

resemble the real world even more accurately. Consider for example the

abstraction that transitions of machines have no duration. This hides
timing attacks and timing channels in the models. One may eliminate

this abstraction by extending the machine model as follows: Instead
of defining machine-transitions “only” by their input/output behavior,

one could include additional information about their real world timing
behavior.10 This extension would enforce additional reasoning about

the effects of timing channels on the system security in any security
proof in this extended model. This is quite clear, since it is a change in

the model’s semantics. Thus, a prover using this extended model has
two possibilities: Either he proves that these extensions have no effects

on the security of his protocols, or he explicitly includes the arising
weaknesses into the service specification, i.e., the trusted host. The

latter forces everyone using this protocol in designing higher protocols
to consider the effects of these weaknesses on the security of the higher

protocols.

The advantage of this approach is that it forces protocol designers to

10For buffer machines this may be used to model networks with certain quality-of-service
guarantees regarding their bandwidth and latency.
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reason more about real world threats on the security of their proto-
cols, thus, simultaneously making secure implementations afterwards

easier. Another advantage is that general theorems such as the compo-

sition theorems provided by the models — assuming one could derive
them despite the extensions of the model — ensure the consistency of

resulting systems also when based on modular construction.

The considerable drawback of this approach is quite clear: proofs be-
come arbitrarily complex when including more and more real world

features into the model. This holds not only for general theorems like
the composition theorem, but also for every single security proof made

in this model. Today’s lack of adequate tool support makes such proofs
in highly detailed models hardly practicable. A possible way out would

be the following. We ensure that generalization of the model maintains
the current model as a special case, similar to the synchronous model

which is a special case of the asynchronous model [8]. Based on this, one
might be able to design general tools which transform a system, which

is secure in the current model, into a corresponding system, which is

secure in the general model. This would be similar to the compiler
techniques proposed by Bellare et al. [11] which transform protocols

secure when assuming authenticated channels to protocols secure also
over unauthenticated channels.

2. Model certain real-world features in the standard models: A
more pragmatic approach is to include additional real world character-

istics in a more ad-hoc and on-demand manner in the standard mod-
els. One example for this approach is the way adaptive adversaries are

modeled into the attacker model of the standard models as shown in
Section 2.4.2.

To pick up the timing-attack example from above, one may think of

explicitly extending the outputs of machines by runtime information
to include timing-attacks in the security proofs. General side channels

between system components may be modeled by including additional

dedicated buffer machines which allow information flow from system
components to the attacker. These buffer machines can be defined

quite freely to resemble the relevant characteristics of the correspondent
real-world side channels in common runtime environments.
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The advantage of this approach is that one could just take these aspects
into account which seem appropriate in a given context and limit the

increase of the models complexity. However, the ad-hoc nature brings

the drawback that the omission of real world characteristics may not
only happen intentionally, but also unintentionally in case the prover

was unaware of certain type of attacks or certain real-world features
crucial to the overall security. In the previous approach the proofs just

would not go through.

4.3.2 Closing the Gap from the Implementation Side

The most pragmatic, yet informal approach, is to ensure that the imple-

mentation respects the assumptions made in the security proofs and meets
the model-inherent abstractions in the real world. This requires that all

security-critical real world characteristics such as time or side channels, not
visible in the model, are properly taken care of in the implementation.

To assist the implementors, there should be a general implementation

architecture on how to safely and faithfully implement the abstractions such
that the implementation of a system proven secure in the standard model

retains the security properties in the real world. This implementation archi-
tecture must be based on a careful study of each abstraction and possible

related real-world attacks. It should also enclose common engineering princi-
ples such as the use of strictly typed and modularity enforcing programming

languages with automatic memory management. Ideally, it should also be
extended by supporting tools and tightly linked to compilers and operating

systems. Picking up the timing-attack example again, the runtime environ-
ment together with a static analysis of the code might ensure that transitions

of components do not vary in their timing behavior. This would prevent tim-
ing channels in the implementation.

The main advantage of this approach is that security proofs in the mod-
els stay manageable. Additionally, many of the implementation guidelines

are general, i.e., independent of the implemented systems, and relatively

straightforward. The main drawback is the informality of the approach. Fur-
thermore, the performance of the adapted implementation will most likely

degrade and the implementation will become more complex. However, the
aforementioned alternatives require considerable changes to the systems nec-
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essary such that the proofs would go through. It is very likely that these
changes result in similar performance drawbacks.

As this approach is currently the most, if not only, viable, it will be one

focus of our ongoing work.
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5 Conclusion

We presented a rigorous model for secure reactive systems with crypto-

graphic parts in asynchronous networks. This model comprises several con-
cepts important to MAFTIA such as faults/attacks, topologies and failures

under the weak synchrony assumption of an asynchronous network. We also
presented a composition theorem for this model which allows for modular

design and security proofs of complex systems. Furthermore, common types
of cryptographic systems and their trust models were expressed as special

cases of this model, in particular systems with static or adaptive adversaries,
and systems with different types of underlying channels. The new model of

adaptive adversaries is highly relevant to MAFTIA since it is a more realistic
attack model in open networks such as the Internet. The model of adaptive

adversaries can be easily adapted to the synchronous model of secure reactive
systems as described in the prior Work-package 6 deliverable D4.

We also presented a detailed, rigorous proof of a system for secure message
transmission in the asynchronous model. This example was chosen, because

it is one of the most basic building blocks of the MAFTIA middle-ware. In

addition, it illustrates the influence of different synchrony assumptions on the
models of secure reactive systems, when compared with the related example

in D4.
Finally, we discussed issues that may arise when implementing reactive

systems which have been proven secure in the models defined in [4] and in
the present deliverable. We focused particularly on security weaknesses which

may arise from the model’s idealizations which do not hold in the real world in
general. In this deliverable, we mainly highlighted the potential problems and

provided only limited solutions to address them. It is the focus of our ongoing
research to develop a corresponding implementation architecture including

tools and guidelines which will support an implementor in constructing a
secure real-world system.
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