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Abstract. The Trusted Computing Group (TCG) has proposed the bi-
nary attestation mechanism that enables a computing platform with a
dedicated security chip, the Trusted Platform Module (TPM), to report
its state to remote parties. The concept of property-based attestation
(PBA) improves the binary attestation and compensates for some of its
main deficiencies. In particular, PBA enhances user privacy by allow-
ing the trusted platform to prove to a remote entity that it has certain
properties without revealing its own configuration.
The existing PBA solutions, however, require a Trusted Third Party
(TTP) to provide a reliable link of configurations to properties, e.g., by
means of certificates. We present a new privacy-preserving PBA approach
that avoids such a TTP. We define a formal model, propose an efficient
protocol based on the ideas of ring signatures, and prove its security.
The cryptographic technique deployed in our protocol is of independent
interest, as it shows how ring signatures can be used to efficiently prove
the knowledge of an element in a list without disclosing it.

Keywords. Property-based attestation, user privacy, ring signatures,
proof of membership, configuration anonymity.

1 Introduction and Background

A fundamental issue in interaction between computing platforms is “trust” or
“trustworthiness” — whether a remote platform behaves in a reliable and pre-
dictable manner, or will be (or already has been) subject to subversion. Cryp-
tographic mechanisms support the establishment of secure channels and autho-
rized access, but without assurance about the integrity of the communication
endpoints. Commodity computing platforms suffer from inherent vulnerabilities
due to high complexity, and lack of efficient protection against tampering or mal-
ware. Hence, an important subject of current research is to develop mechanisms
for gaining assurance about the trustworthiness of remote peers regarding their
integrity, platform configuration, and security policies. The concept of Trusted
Computing aims at resolving such issues.

The TCG approach and binary attestation. An industrial approach to-
wards the realization of the Trusted Computing functionality within the com-
puting platforms is the initiative of the Trusted Computing Group (TCG). The



TCG has published many specifications amongst which the most important one
is that of the Trusted Platform Module (TPM) [25]. Currently, TPMs are im-
plemented as small, tamper-evident hardware modules embedded in commodity
platforms, providing (i) a set of cryptographic functionalities, (ii) the protection
of cryptographic keys, (iii) the authentication of platform configuration (attes-
tation), and (iv) cryptographic sealing of sensitive data to particular system
configurations. However, the TCG defines only a limited set of commands, and
the firmware cannot be programmed by end-users to execute arbitrary func-
tions. Millions of platforms (PCs, notebooks, and servers) being sold today are
equipped with TPMs.

One of the main features supported by the TPM is the so-called trusted in-
tegrity measurement: a hash value of the platform state is computed during the
boot process and stored in specific registers of the TPM, the Platform Config-
uration Registers (PCRs),those state is also called the platform’s configuration.
Of potential interest is the offered functionality called binary attestation, which
allows a remote party (verifier) to get an authentic report about the binary con-
figuration of another platform (prover), given by the prover’s TPM signature on
the configuration.

Deficiencies of TCG binary attestation. TCG binary attestation suffers
from several shortcomings: The slightest change in the measured software or
configuration files — whether security-relevant or not — will lead to a changed
binary configuration. In general, it is not clear, how a verifier should derive
the trustworthiness of a platform from such a binary value. System updates and
backups are highly non-trivial; the multitude of different versions of many pieces
of software cause serious manageability problems.

From the privacy point of view, binary attestation bears several risks: (1)
The TPM’s public key needed to verify an attestation could be used to identify
a TPM and trace a platform. To solve this problem, Brickell et al. [3] introduced
the Direct Anonymous Attestation (DAA) protocol. Improvements of DAA and
alternative DAA schemes (e.g., [5,4,6]) are orthogonal to our work and could be
used as a building block for our protocol. (2) Typically the information about
the configuration of a computing platform or application is revealed to a remote
party requesting the state of a platform. This information can be misused to
discriminate against certain configurations (for example, operating systems) and
even vendors, or may be exploited to mount attacks.

Property-based attestation. One general concept to overcome shortcomings
of the TCG’s binary attestation is to transform the binary attestation into the
property-based attestation (PBA), as described by Sadeghi and Stüble [21], and
by Poritz et al. [19]. The basic idea of PBA requires a computing platform to
attest that it fulfills the desired (security) requirements, so-called ‘properties’,
without revealing a respective software or/and hardware configuration. The for-
mal definition of properties as well as the development of various practical solu-
tions for PBA are still active areas of ongoing research.

One concrete solution for PBA was proposed by Chen et al. in 2006 [11].
Their protocol requires an off-line Trusted Third Party (TTP) to publish a list
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of trusted configurations and respective certificates which attest that the config-
urations provide specific properties. A prover can use the signed configurations
and certificates to prove to a verifier that it has appropriate configurations asso-
ciated with the certified properties, without disclosing the specific configurations,
which the platform holds.

Another solution for PBA is proposed by Kühn et al. [14]. In their work, the
authors suggest a modified system boot architecture, such that not binary hash
values of files are stored by the TPM, but instead abstract values representing
properties, e.g., a public key associated with a property certificate. However,
this approach also requires a TTP to issue certificates for properties and the
bootloader must be binary-attested.

The drawback of these solutions is that such a TTP might not be available
or/and desirable in many real applications, for example if two entities/users
want to have a private communication with each other. They have their own
understanding of the relation between various configurations and security prop-
erties. They do not need (and do not want) to ask any kind of TTPs to certify a
correlation between the configurations and properties. However, they still want
to keep their platform configuration information secret from each other.

Our contribution. In this paper, we propose a protocol for PBA that does
not require the involvement of a TTP to certify properties, where a platform
(equipped with a TPM) convinces a remote party that its configuration satisfies
a given property. For this, the two parties first agree on a set of trusted configu-
ration specifications, which they both consider to be trustworthy, i.e., associated
with a well-defined security property or properties. The platform then proves
that its configuration specification is in this set. In our protocol, TPM and the
host software compute the proof jointly.

For some applications, it might be unrealistic to assume that the parties in
the attestation protocol can decide themselves which configurations are trust-
worthy and which are not, and thus they still have to rely on third parties in
practice. Our protocol has the advantage that even in this case no global trusted
party is necessary: both participants can choose independently how to agree on
trustworthy configurations or they can delegate this decision to other parties.

Further, we define a formal security model for PBA, which we also use in our
proofs, and where the main security requirements are evidence authentication
and configuration privacy. While the former guarantees an unforgeable binding
between the platform and its configuration specification, the latter provides the
non-disclosure of the configuration specification. In our PBA protocol, these
requirements are achieved through the use of a ring signature (cf. Section 4.3), i.e.
configuration privacy results from the anonymity of the signer whereas evidence
authentication is based on the unforgeability of the signature.

Moreover, the cryptographic technique employed in our protocol may be of
independent interest: We show how ring signatures can be used for efficiently
proving the knowledge of an element in a list without disclosing it.

Outline. In Section 2, we introduce the system model of property-based attes-
tation. In Section 3, we sketch different solutions on a high level. In Section 4,
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we set up notation and explain some building blocks which will be used in our
concrete PBA scheme. In Section 5, we present and discuss a new PBA scheme,
and in Section 6 we define a formal security model and state theorems about the
security of the scheme. In Section 7, we conclude the paper by mentioning some
unsolved problems and future work.

2 System Model for PBA

The following system model for PBA will serve as the basis for the security
model in Section 6.

Involved parties. A PBA protocol involves two participants: a prover P and a
verifier V. The prover is a platform consisting of a host H and a trusted module
TPM M (see Figure 1). To cover multiple executions of the protocol we consider
multiple instances and use indices to distinguish among their participants, i.e.,
Pi, Vi. Each instance includes a single protocol execution with some unique ses-
sion identity (SID) and two participants Pi and Vj are treated as communication
partners (in the same instance) if they share the same SID.

Assumptions. It is assumed that the communication between a host Hi and
its TPM Mi is through a secure channel (private and authentic), and that Mi

and Vi communicate via Hi. We omit the indices i and j of the participants in
an instance when no risk of confusion exists. Moreover, the TPM is trusted by
all parties and possesses a secret (signing) key skM which is unknown to the
host. The corresponding public (verification) key is available to both P and V;
see also “trust relations” in Section 6.1.

Properties and configurations. Each prover P has a configuration value
denoted csP , which is an authenticated record about its platform’s configuration.
The value csP is known to both the host H and TPM M, and it is computed by
M from correctly measured configuration information, stored securely in special-
purpose registers — the platform configuration registers (PCRs). As a result, H
cannot modify this value without being detected. This is guaranteed by the
properties of secure measurement and reporting based on the trusted computing
technology [25]. It is assumed that before running the PBA protocol, P and V
have already agreed on a set of configuration values denoted CS = {cs1, ..., csn}
that satisfy the same property. So, we say that a configuration value cs satisfies
a given property associated with CS , if and only if cs ∈ CS .

Definition of PBA. A property-based attestation (PBA) scheme consists of
the following three polynomial-time algorithms:

– Setup: Given the security parameter 1κ, this probabilistic algorithm selects
a set of public parameters that are necessary to run the PBA protocol, and
produces a private/public key pair for each TPM.
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Fig. 1. PBA system model.

– PBA-Sign: On input a configuration value csP , a list of admissible configura-
tions CS , and a nonce Nv, this (distributed) randomized algorithm outputs
a signature σ on csP .

– PBA-Verify: On input a candidate signature σ and CS , this deterministic
algorithm outputs 1 (accept) if σ is a valid signature on a value from CS , or
0 (reject) otherwise.

3 Solutions

In this section, we sketch two high-level solutions for PBA without relying on
trusted parties to certify the link between configurations and properties.

Basically, P has to prove that its configuration value csP belongs to the
agreed set CS = {cs1, . . . , csn}. More precisely, V would accept a proof if and
only if: (i) The proof is created by a valid TPM. If TPM anonymity is required,
the DAA scheme [3] can be used to provide this feature. (ii) The proof is a fresh
response to a specific challenge from V. (iii) The proof ensures that csP = csj

for an index j ∈ {1, 2, . . . , n}, but does not reveal the value of j.
Such a proof implements PBA-Sign, whereas PBA-Verify is the verification of

the proof. In Setup, the keys for the TPM and system parameters are generated.

Solution 1: TPM as single signer. The proof can be achieved by a new TPM
command defined as follows:

1. TPM takes as input a list of configurations CS and a nonce N . The nonce
is assumed to be chosen by the verifier V.

2. TPM checks for each csj ∈ CS if csP = csj , until either a match is found,
or the entire list has been checked.

3. If csP is in the list, the TPM generates a signature on (1, N,CS ); otherwise,
the TPM generates a signature on (0, N,CS ), which is then forwarded to V.

The obvious drawbacks of this approach are: TPM operations depend on the
size n of CS (O(n) in a straightforward implementation, and O(log n) if CS is
a sorted list). As the TPM’s memory is very limited, this would either impose
a severe restriction on the size of CS , or the transfer of the list would have to
be split up, causing further complexity of the TPM-command and slowing down
the communication between host and TPM, due to the overhead.
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Solution 2: TPM shares signer role with host. In this solution, the TPM signs
a hidden version — a commitment — of the configuration csP , and the host
completes the proof that the hidden configuration is in the set CS . A similar
approach is used in the DAA protocol [3].

Our PBA protocol proposed in Section 5 is an elegant and efficient example
of this solution. It makes use of ring signatures in that the host computes n
public keys for a ring signature scheme from the configurations in CS and the
commitment to csP (which was signed by the TPM), and determines the secret
key that corresponds to csP . The signer anonymity of the ring signature scheme
ensures that the verifier does not learn which key has been used for signing, thus
csP is not disclosed. Our construction guarantees that the prover succeeds only
if the hidden configuration csP is indeed in CS .

Current TPMs support all operations (random number generation, modular
exponentiation, and signature generation) needed by our protocol. However, the
TCG currently does not specify a command to create and sign a commitment to
a configuration which is stored inside the TPM. To implement such a command,
only firmware changes would be required.

Other protocols for similar solutions could be developed, for instance based
on existing zero-knowledge proofs (e.g., [8,13,7]) or zero-knowledge sets [15].

4 Preliminaries

4.1 TPM Signatures

The existing TCG technology defines two ways for a TPM to create own digital
signature σM. The first way is to use DAA [3]. With a DAA signature, a verifier
is convinced that a TPM has signed a given message, but the verifier cannot learn
the identity of the TPM. The message to be signed can be either an Attestation
Identity Key (AIK), or an arbitrary data string, The second way is to use
an ordinary signature scheme. A TPM generates a signature using an AIK as
signing key, which could either be certified by a Privacy-CA, or it could be
introduced by the TPM itself using a DAA signature. For simplicity, we do not
distinguish these two cases, and denote by σM := SignM(skM;m) the output of
TPM’s signing algorithm on input the TPM’s signing key skM and a message
m, and by VerM(vkM;σM,m) the corresponding verification algorithm, which on
input the TPM’s verification key vkM outputs 1 if σM is valid and 0 otherwise.

4.2 Commitment Scheme

We apply the commitment scheme by Pedersen [18]: Let skm
com be the secret

commitment key. A commitment on a message m is computed as Cm := gmhskm
com

mod P . P is a large prime, h is a generator of a cyclic subgroup GQ ⊆ Z∗P of
prime order Q and Q|P−1. g is chosen randomly from 〈h〉; furthermore, logh(g) is
unknown to the committing party. Both the message m and skm

com are taken from
ZQ. The Pedersen commitment scheme as described above is perfectly hiding
and computationally binding, assuming the hardness of the discrete logarithm
problem in a subgroup of Z∗P of prime order (for P prime).

6



4.3 Ring Signatures

The notion of a ring signature was first introduced by Rivest et al. [20]. It allows
a signer to create a signature with respect to a set of public keys. Successful veri-
fication convinces a verifier that a private key corresponding to one of the public
keys was used, without disclosing which one. In contrast to group signatures, no
group manager is needed.

For various security definitions for ring signatures see [2]. Recent efficient
ring signature schemes which are provably secure in the standard model (i.e.,
without using random oracles) are proposed in [23,9], where in [9] a signature
with size only O(

√
n) is proposed. Dodis et al. [12] showed that ring signatures

with constant size in the number of public keys can be achieved in the random
oracle model.

Unfortunately, none of these schemes can be used easily for our purposes:
In our protocol, we employ a construction, where the public keys for the ring
signature are computed from commitments formed by the TPM. We show how
this can be done efficiently for Pedersen commitments (cf. Section 4.2) and public
keys of the form y = gx mod P , where x is the corresponding secret key. However,
the schemes above use keys of different types.

In Figure 2, we recall an efficient ring signature scheme from [1], which we
propose to use for our PBA solution. The scheme is a generalization of the
Schnorr signature scheme [22]: Intuitively, the product in step 2(b) corresponds
to combined commitments for individual Schnorr signatures, in step 2(c) and
2(d), the challenges for the individual Schnorr signatures are derived from a
single challenge, and in step 2(e), the secret key is used to compute s. The
verification equation, where the sum of the challenges is compared to a hash
value, ensures that a valid signature cannot be created without a secret key xj .
The scheme is provably secure in the random oracle model, under the discrete
logarithm assumption.

We denote the generation of a ring signature σr on message m with re-
spect to the public key ring {yi}1≤i≤n and with private signing key x by σr :=
SigRing(x; {yi};m). Signature verification is denoted by VerRing({yi};σr,m).
For simplicity, we omit the public parameters g, P, Q and the range of the index
i in our notation.

5 Ring Signature-Based PBA without TTP

In this section, we propose a protocol for PBA, which is based on ring signatures.
The TPM generates a signature on a commitment to the configuration csP . Then
the host H creates a proof, using a ring signature, that csP is in the agreed set
CS of configurations with the given property. The verifier V verifies the TPM
signature and the ring signature.

Note that in our protocol, the TPM is trusted by all parties, but its resources
are restricted, and it can execute only a very limited set of instructions. The host
H is not trusted by the verifier V, hence the protocol has to protect evidence
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1. Key generation. Let κ be a security parameter. On input 1κ, create g, P and Q.
A signer Si (i = 1, ..., n) chooses xi ∈R {0, 1}`Q and compute yi = gxi mod P .
Output its public key (g, P, Q, yi) and the corresponding secret key xi.

2. Signing algorithm SigRing(xj ; {yi}; m).
A signer who owns secret key xj generates a ring signature on a message m with
public key list (g, P, Q, yi) (i = 1, ..., n), where j ∈ {1, ..., n} as follows:
(a) Choose α, ci ∈R {0, 1}`Q for i = 1, ..., n, i 6= j.
(b) Compute z = gα Qn

i=1,i6=j yci
i mod P .

(c) Compute c = Hash(g‖P‖Q‖y1‖...‖yn‖m‖z).
(d) Compute cj = c− (c1 + ... + cj−1 + cj+1 + ... + cn) mod Q.
(e) Compute s = α− cj · xj mod Q.
(f) Output the signature σr = (s, c1, ..., cn).

3. Verification algorithm VerRing({yi}; σr, m).
To verify that the tuple σr = (s, c1, ..., cn) is a ring signature on message m, check
that

Pn
i=1 ci ≡ Hash(g‖P‖Q‖y1‖...‖yn‖m‖gsyc1

1 ...ycn
n mod P ).

Fig. 2. A Ring Signature Scheme [1]

authentication against a malicious host. H cannot be prevented from disclosing
its own configuration csP , thus for configuration privacy, we have to assume that
H is honest.

5.1 Security Parameters

We suggest the following security parameters (values in parentheses indicate
realistic values4 for current TPMs):

– `cs (160): the size of the value of csP .
– `∅ (160): the security parameter for the anti-replay value (nonce).
– `P (1024): the size of the modulus P .
– `Q (160): the size of the order Q of the subgroup of Z∗P .

The parameters `P and `Q should be chosen such that the discrete logarithm
problem in the subgroup of Z∗P of order Q with P and Q being primes such that
2`Q > Q > 2`Q−1 and 2`P > P > 2`P−1, is computationally hard.

5.2 Setup

We assume that V can verify TPM signatures (including revocation verification)
and that H and V have agreed on a set of configurations CS .

Prior to the execution of the PBA protocol, the parties have to agree on the
following parameters, which can be used for several protocol runs (potentially
4 examples based on the use of SHA-1 [16] as a hash function (like in current TPMs),

and recommendations of the US National Institute of Standards and Technology
(NIST) for similar applications (see, for instance, [17]); changes corresponding to
stronger hash-functions, such as SHA-256, can be made straightforwardly.
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with different sets CS ): primes P and Q, generators g and h of a subgroup of
Z∗P of order Q (i.e., the discrete logarithm problem is hard in 〈g〉 = 〈h〉). The
discrete logarithm logg(h) mod P must be unknown to H.

5.3 Signing and Verifying Protocol

The attestation procedure executed between a TPM (M), its host (H), and
a verifier (V) is described in Figure 3. As a result of the protocol, the host
creates a ring signature σr, which is based on a TPM signature σM on the
message C, which is a commitment to csP . The TPM has to create and sign C,
which it then opens towards H. To create the ring signature, the host uses the
value r as the secret key (if csP ∈ CS , this works, because yj = hr mod P for
some j). From the ring signature, the verifier is convinced that the platform has
been configured with one of the set of acceptable configuration specifications,
CS = {cs1, · · · , csn}, without knowing which one.

TPM

csP , skM

H

csP ,CS =
{cs1, . . . , csn}

V

vkM,CS =
{cs1, . . . , csn}

? ?

� Nv � Nv Nv ∈R {0, 1}`∅

r ∈R Z∗Q
C := gcsPhr mod P

σM :=
SignM(skM; (C, Nv))

-C, r, σM yj := C/gcsj mod P
(for j = 1, . . . n)

σr :=
SigRing(r; {yj}; Nv)

-C, σM, σr

VerM(vkM; σM, (C, Nv))

yj := C/gcsj mod P
(for j = 1, . . . n)

VerRing({yj}; σr, Nv)

? ? ?

OK OK OK

Fig. 3. The protocol of the PBA scheme. Common input: g, h, P,Q

5.4 Protocol Properties

Our protocol has some interesting properties:
First, no trusted third party is needed for this protocol. The only exception

is the certification of TPM keys: The verifier may rely on a DAA issuer or a
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Privacy-CA to ensure that the TPM key belongs to a valid TPM, depending
on the TPM signature scheme (see Section 4.1). However, this is completely
independent from the PBA protocol, and neither a DAA issuer nor a Privacy-
CA could breach the configuration privacy of our protocol.

Second, the configuration set CS is created flexibly, dependent on the agree-
ment between prover P and verifier V. One approach to negotiate the set of
acceptable configurations could be analogous to the SSL/TLS handshake: The
prover sends a proposal for CS to V, who can then select an appropriate subset.
However, our protocol allows for different ways to agree on CS ; the particular
method can be chosen according to a concrete application scenario.

Third, the size n of the set CS affects the configuration privacy. If n is small,
V might have a high probability in guessing the configuration csP . Therefore,
to keep csP private, P should execute the protocol only if CS is of acceptable
size. Moreover, P has to ensure that V cannot learn csP by running the PBA
protocol multiple times with different configuration sets, because in the case of
several successful attestations, V would know that csP is in the (possibly small)
intersection of the sets used in the protocol executions. This example shows
that P should install a privacy policy which prevents such abuses of the PBA
protocol.

Fourth, note that the overhead of the TPM compared to binary attestation
is small. Additionally, the TPM has to form the commitment C, which must be
signed instead of csP . So the overhead is just choosing a random number r and
performing a modular multi-exponentiation modulo P (with two exponents). As
with binary attestation, the TPM has to generate one digital signature (e.g.,
2048 bit RSA). The TPM’s computation does not depend on the size of CS .

6 Security of our PBA Scheme

Here, we define a formal (game-based) security model based on the system model
from Section 2, and state theorems about the security of our PBA scheme.

6.1 Security Model

Adversary model. The adversary A is a PPT algorithm and an active adver-
sary that has full control over the communication channel between H and V.
This is modeled by the query of the form send(E,m) which allows A to address
a message m to an entity E ∈ {H,V}. In response, A receives a message which
would be generated by E according to the protocol execution. In the definition
of entity authentication, in which malicious hosts should also be considered, A
is also given access to another query sendTPM(m) by which it can communicate
with M. We assume that m contains the identity of the sender (as chosen by A).
Moreover, when considering evidence authentication, the adversary may corrupt
the host via the query corruptH, which returns the configuration csP to A (csP
is H’s only secret).
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We assume that A cannot corrupt the TPM. In reality, a hardware attack
would be necessary to corrupt a TPM, i.e., we limit the adversary to software-
only attacks, which is the assumption of the TCG [25]. In case a real-world
adversary succeeds in attacking the TPM, our protocol has to rely on the revo-
cation mechanisms for TPM signatures.

Evidence authentication. We formalize the intuitive security requirement
that A should not be able to pretend that P has a configuration csP satisfying
the property that has to be attested (i.e., csP ∈ CS ), when in fact the property
is not fulfilled (i.e., csP 6∈ CS ).

Let Gameev-auth
A (1κ) be the following interaction between P, V, and A. Be-

fore the interaction, A chooses a platform with a valid TPM M and with a
configuration csP 6∈ CS . Then A is given access to send(E,m), sendTPM(m),
and corruptH queries to any P chosen by A. Uncorrupted parties behave as
specified by the protocol. A wins, if it outputs a PBA signature σ, such that
PBA-Verify accepts σ. We denote the success probability of A by Succcf-priv

A (1κ) :=
Pr[Gameev-auth

A (1κ) = win], and its maximum over all PPT adversaries A (running
in time κ) as Succcf-priv(1κ).
A PBA protocol provides evidence authentication if Succcf-priv(1κ) is negligible
in κ.

Configuration privacy. The security requirement that the configuration csP
of P should be kept private is captured by the following game. For this require-
ment, host H and TPM M of P have to be honest because P could always send
csP to A.

Let Gamecf-priv
A (1κ) be the following interaction between P, V and A. A is

given access to send(E,m) queries. Moreover, A may access sendTPM(m) and
corruptH queries for all but one prover P chosen adaptively by A, which has to
remain honest. At the end of the interaction, A outputs an index i. A wins if i is
the index of P’s configuration in the set CS = {cs1, . . . , csn}, i.e., if csP = csi.
We denote the advantage of A (over a random guess) with Advcf-priv

A (1κ, n) :=
|Pr[Gamecf-priv

A (1κ) = win]− 1/n|, and its maximum over all PPT adversaries A
(running in time κ) as Advcf-priv(1κ, n).
A PBA protocol provides configuration privacy if Advcf-priv(1κ, n) is negligible
in κ.

Security of PBA. A PBA scheme is secure, if and only if it provides both
evidence authentication and configuration privacy.

Trust relations. The TPM is assumed to be trusted by both host and verifier.
For evidence authentication, a PBA protocol must ensure that a malicious host
cannot cheat an honest verifier, whereas for configuration privacy, it must prevent
a verifier controlled by A from determining the configuration of an honest host.
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6.2 Security Analysis

The following theorems demonstrate the security of our PBA scheme. For the
proofs, see Appendix A.

Theorem 1 (Evidence Authentication). The PBA protocol presented in
Section 5 provides evidence authentication (in the random oracle model), assum-
ing the security of the ring signature scheme, the security of TPM signatures,
and the hardness of the discrete logarithm assumption. In more detail:

Succcf-priv(1κ) ≤ q2/2`∅ + εTPM + εring + εdlog,

where q is the number of protocol runs, `∅ is polynomial in the security parameter
κ, εTPM is the probability of an adversary to forge a TPM signature, εring is
the probability to forge a ring signature, and εdlog is the probability to solve the
underlying discrete logarithm problem.

Remark. Our proof does not directly use the random oracle model, however,
it is required by the ring signature scheme we use.

Theorem 2 (Configuration Privacy). The PBA protocol presented in Sec-
tion 5 provides configuration privacy against computationally unbounded adver-
saries, due to the unconditional signer anonymity of the ring signature scheme
and perfect hiding of the commitment scheme.

Remark. Although our definition of configuration privacy assumes a PPT
adversary (which would be reasonable for practical purposes), our protocol of-
fers even unconditional security, because we use a perfectly hiding commitment
scheme and an unconditionally signer-anonymous ring signature scheme.

7 Conclusion and Future Work

The concept of property-based attestation (PBA) has been proposed to overcome
several deficiencies of the (binary) attestation scheme proposed by the Trusted
Computing Group (TCG). Amongst others, the TCG attestation reveals the
system configuration to third parties that could misuse it for privacy violations
and product discrimination.

In this paper, we proposed the first cryptographic protocol for PBA which, in
contrast to the previous solutions, does not require a Trusted Third Party to cer-
tify properties. In our protocol, the TPM has to compute only one commitment
and one signature.

Furthermore, the cryptographic technique used here might be of indepen-
dent interest: We demonstrate how a ring signature can be employed to prove
membership in a list.

Future work may include the investigation of how to determine meaningful
properties. Moreover, a generic approach based on any ring signature scheme,
an efficient scheme with a security proof in the standard model, and the design
of a PBA protocol with sub-linear communication and computation complexity
in the size of the configuration set CS are still open problems.
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21. A. Sadeghi and C. Stüble. Property-based attestation for computing platforms:
Caring about properties, not mechanisms. In Proceedings of NSPW ’04, pp. 67–
77, ACM Press, Sep. 2004.

22. C. P. Schnorr. Efficient Signature Generation by Smart Cards. J. Cryptology,
4(3):161–174, Springer, 1991.

23. H. Shacham and B. Waters. Efficient Ring Signatures without Random Oracles.
In Proceedings of PKC ’07, LNCS vol. 4450, pp. 166–180, Springer, 2007.

24. V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 http://eprint.iacr.org/2004/332,
2004.

25. Trusted Computing Group. TCG TPM Specification, Version 1.2. Available at
https://www.trustedcomputinggroup.org/.

A Security Proofs

Proof (Evidence Authentication). We structure the proof as a sequence of games
[24], where a PPT adversary A (see Section 2 for the adversary model) interacts
with a simulator S. The first game is Gameev-auth

A . In each subsequent game, a
new “event” is introduced. S aborts, whenever this event occurs. We show that
each event can only happen with negligible probability for any PPT adversary,
hence the probability for A to win game Gi+1, denoted by Pr[wini+1], differs
only by a negligible amount from its probability Pr[wini] to win game Gi.

G0 The initial game is Gameev-auth
A , where S plays the game with A by simulating

the honest parties as specified by the protocol. A chooses a platform with
a configuration csP 6∈ CS of his choice (as specified in Section 6.1), and
S simulates the honest TPM M of this platform. A wins Gameev-auth

A , and
hence G0, if it manages to output σ = (C, σM, σr) such that S (acting as
an honest verifier) accepts σ as a proof that csP ∈ CS , although actually
csP 6∈ CS . Because G0 is Gameev-auth

A , we have Pr[win0] = Succcf-priv(1κ).
G1 In the event that S, acting as a verifier, chooses a nonce Nv that already

occurred in a previous protocol run, S aborts the simulation. For this com-
parison, S records all nonces. As Nv is chosen randomly by S, the probability
ε1 of this is ≤ q2/2`∅ (which is negligible in the security parameter), where
q denotes the number of protocol runs. Hence, Succcf-priv(1κ) ≤ Pr[win1]+ε1.

G2 S simulates protocol execution as before, with the difference that all TPM
signatures are obtained from the corresponding signing oracle. In the event
that S receives an output (C, σM, σr) from A, where σM was not created
previously by S, the simulation is aborted. In this case, A provided S with
a forgery of a TPM signature. The probability εTPM of this event is the
probability of a forgery of a TPM signature. Thus, Succcf-priv(1κ) ≤ Pr[win2]+
ε1 + εTPM.
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G1 covers replay attacks by estimating the probability that the same nonce
occurs twice, and G2 covers forgeries of TPM signatures. It remains to estimate
the probability Pr[win2]. We consider two cases: either A wins in G2 by forging
the ring signature (with probability εring), or without it. Since we are interested
in the overall probability of A winning in G2, we do not require from S to detect
which of these distinct cases occurs.

If no forgery of the ring signature occurred, but A wins G2, A must know a
secret key r′ matching one of the public keys used to compute the ring signature.
Hence, A must know r′, such that hr′ = C/gcsj = gcsP−csj hr mod P for some
j ∈ {1, . . . , n}. Because csP 6= csj , we have r 6= r′, thus A could compute the
discrete logarithm logg(h) = (csP − csj)/(r′ − r) mod Q. The probability of the
adversary to win the last game is Pr[win2] = εring +(1−εring) ·εdlog ≤ εring +εdlog,
where εdlog is the probability to solve the underlying discrete logarithm problem.

Thus, in total, Succcf-priv(1κ) ≤ ε1+εTPM+εring+εdlog, which is negligible in κ
if the TPM signature and ring signature schemes are secure and the underlying
discrete logarithm problem is hard. ut

Note that although our proof is in the standard model, the ring signature
scheme in [1] requires the random oracle model.

Proof (Configuration Privacy). We demonstrate that Advcf-priv(1κ, n), the maxi-
mum advantage over all A in Gamecf-priv

A , is negligible in κ, even if the adversary
is computationally unbounded. For this, we construct a simulator S that plays
Gamecf-priv

A with some A, simulating the honest parties. The goal of A is to break
the configuration privacy of the PBA scheme, and the simulator’s goal is to break
either the perfect hiding property of the commitment scheme or the uncondi-
tional signer ambiguity property of the ring signature scheme.

We play the game twice. In the first case, we assume that the ring signature
is secure and show how S can break the commitment scheme. In the second case,
we assume that the commitment scheme is secure, and hence, we show how S
can break the ring signature scheme.

Case 1. In this case, S is given a commitment C = gcsP · hr mod P with
csP ∈ CS , and plays Gamecf-priv

A with A.
Once S receives a send query with a nonce Nv from A, it uses C in the PBA

protocol execution as the TPM’s commitment (without knowing csP and r),
and creates a TPM signature σM = SignM(skM; (C,Nv)). The computationally
unbounded simulator S can compute α, such that h = gα mod P , and k, such
that C = gk = gcsP+αr mod P . Although S knows neither csP nor r, it can
establish n equations k = csj + α · rj (for j = 1, . . . , n). Thus, S can compute n
pairs (csj , rj), and create the ring signature σr = SigRing(rj ; {yj};Nv), where
yj = gαrj = hrj mod P , with any of these rj as a signing key. Because of the
signer ambiguity of the ring signature scheme, S can choose an arbitrary rj (for
j ∈R {1, . . . , n}). S sends C, σM, and σr to A.

At the end of the game, A outputs an index i. S attacks the perfect hiding
property of the commitment scheme by using the pairs (csj , rj) computed above,
and opening the commitment to (csi, ri).
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Because we assume that the ring signature is secure, the probability of S to
break the commitment scheme successfully is the probability of A to determine
i with csi = csP . Thus, a non-negligible advantage Advcf-priv implies that S can
break the perfect hiding property.

Case 2. In this case, S is given public/private key pairs (yj , xj) (j = 1, . . . , n)
for the ring signature scheme, and access to a signature oracle for ring signatures
under this key ring. S can use the oracle to query ring signatures on arbitrary
messages. The unconditional signer ambiguity states that S should not be able
to find out which private key was used for signing (although S knows all public
and private keys). S chooses k ∈R ZQ, and computes csj = k − xj mod Q for
j = 1, . . . , n. Then, S starts to play Gamecf-priv

A with A.
Once S receives a send query with a nonce Nv from A, it computes C :=

gk mod P and σM := SignM(skM; (C,Nv)). S uses the ring signature oracle to
create a ring signature σr on the message Nv, and sends C, σM, and σr to A.

At the end of the game, A outputs an index i. Since the commitment C
was chosen randomly, the only possibility of A to win Gamecf-priv

A is to break the
signer ambiguity of the ring signature. S also outputs i to indicate that xi was
used to generate the signature, thus breaking the unconditional signer ambiguity
of the ring signature scheme. ut
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