
How Private is Your Private Cloud?
Security Analysis of Cloud Control Interfaces

Dennis Felsch
Horst Görtz Institute for

IT-Security
Bochum, Germany

dennis.felsch@rub.de

Mario Heiderich
Horst Görtz Institute for

IT-Security
Bochum, Germany

mario.heiderich@rub.de

Frederic Schulz
Horst Görtz Institute for

IT-Security
Bochum, Germany

frederic.schulz@rub.de
Jörg Schwenk

Horst Görtz Institute for
IT-Security

Bochum, Germany
joerg.schwenk@rub.de

ABSTRACT
The security gateway between an attacker and a user’s pri-
vate data is the Cloud Control Interface (CCI): If an at-
tacker manages to get access to this interface, he controls
the data. Several high-level data breaches originate here,
the latest being the business failure of the British company
Code Spaces.

In such situations, using a private cloud is often claimed
to be more secure than using a public cloud. In this paper,
we show that this security assumption may not be justi-
fied: We attack private clouds through their rich, HTML5-
based control interfaces, using well-known attacks on web
interfaces (XSS, CSRF, and Clickjacking) combined with
novel exploitation techniques for Infrastructure as a Service
clouds.

We analyzed four open-source projects for private IaaS
cloud deployment (Eucalyptus, OpenNebula, OpenStack, and
openQRM) in default configuration. We were able to com-
promise the security of three cloud installations (Eucalyptus,
OpenNebula, and openQRM) One of our attacks (OpenNeb-
ula) allowed us to gain root access to VMs even if full perime-
ter security is enabled, i.e. if the cloud control interface is
only reachable from a certain segment of the company’s net-
work, and if all network traffic is filtered through a firewall.

We informed all projects about the attack vectors and pro-
posed mitigations. As a general recommendation, we pro-
pose to make web management interfaces for private clouds
inaccessible from the Internet, and to include this technical
requirement in the definition of a private cloud.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCSW’15, October 16, 2015, Denver, Colorado, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3825-7/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2808425.2808432.

Keywords
Cloud Security; Cloud Interface; Infrastructure as a Service;
XSS; CSRF

1. INTRODUCTION
According to NIST Special Publication 800-145 [24], cloud

computing can be categorized into three service models:
Software as a Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS). In this paper, we
concentrate on IaaS cloud systems. An IaaS cloud provides
the consumer with full control over the (virtualized) infras-
tructure to use. A consumer has the choice between differ-
ent (virtual) hardware configurations and operating systems
(bundled into a Virtual Machine, VM), and may select net-
work configurations and storage systems.

The Cloud Control Interface (CCI).
Even if all other components of a cloud system (VMs, vir-
tual networks, persistent storage) are protected by perime-
ter security systems (network separation, firewalls, IDS), the
Cloud Control Interface (CCI, interface 4 in Figure 1) nec-
essarily must be exposed to the outside world, since it must
allow for “on-demand self-service” [24]. Therefore, CCIs are
implemented as public web APIs, mostly as a web applica-
tion, but also in form of REST or SOAP-based APIs.

This gives an attacker the same type of access as the le-
gitimate user, thus a user’s data is only secure if the CCI is
secure. Just to mention one serious attack from 2014, the
British company Code Spaces went out-of-business because
an attacker seized control over their Amazon AWS CCI and,
after the company had been blackmailed and refused to pay,
deleted all company data including backups in the Cloud.1

Because of this impact of a possible security breach of a
CCI, we believe that CCIs should employ any know security
measure to protect themselves. Unfortunately, this is not the
case: Especially web application CCIs suffer from the com-
plexity of the interface, which not only supports the growing
range of HTML5 standards (Scriptless Attacks), but also im-
plements legacy features going back to DOM Level 0 (DOM

1http://www.infoworld.com/article/2608076/
data-center/murder-in-the-amazon-cloud.html

5

http://www.infoworld.com/article/2608076/data-center/murder-in-the-amazon-cloud.html
http://www.infoworld.com/article/2608076/data-center/murder-in-the-amazon-cloud.html

Cloud	 Management	
Pla/orm	 (CMP),	 e.g.	

OpenStack,	
Eucalyptus,	
OpenNebula	

VM	
	

VM	
	

VM	
	

Hypervisor	

OS	

Compute	 Node	 1	

VM	
	

VM	
	

VM	
	

Hypervisor	

OS	

Compute	 Node	 2	

VM	
	

VM	
	

VM	
	

Hypervisor	

OS	

Compute	 Node	 3	
...	

Persistent	 Data	
Storage	

2	

DHCP	
DNS	 3	

hHps://admin.cloud.tld	

Start	 new	 VM	
Store	 Data	 persistently	
Change	 SSH	 key	
Monitor	 all	 VMs	

4	

1	

Figure 1: IaaS cloud building blocks

Clobbering), undocumented browser behaviour (mXSS) and
large 3rd party libraries (e.g. jQuery).

The Promises of Private Clouds.
Private Clouds are often advertised as being more secure
than their Public Cloud counterparts, and thus as a solution
for securely protecting company data. [24] describes these
different deployment models, which are mostly applied to
the IaaS service model: Private Clouds, provisioned for the
use of a single entity, Public Clouds which are accessible for
open use by the general public, and two intermediate models,
Community and Hybrid Clouds. In this paper, we concen-
trate on private cloud deployments. According to [24] this is
defined as follows: “Private cloud. The cloud infrastructure
is provisioned for exclusive use by a single organization com-
prising multiple consumers (e.g., business units). It may be
owned, managed, and operated by the organization, a third
party, or some combination of them, and it may exist on or
off premises.”

ISO/IEC 17788 [15] gives more or less the same descrip-
tion of this deployment model: “A private cloud may be
owned, managed, and operated by the organization itself or
a third party [...]. Private clouds seek to set a narrowly con-
trolled boundary around the private cloud based on limiting
the customers to a single organization” [15].

Both NIST and ISO definitions are organizational in their
nature and do not define, how the deployment models differ
from a technical point of view. For example, the bound-
ary mentioned in the ISO definition could be realized using
firewalls and network separation techniques. However, if a
private cloud is operated by a third party, as mentioned in
the standard, the security gain of a firewall protection is
questionable.

In this paper, we investigate if private clouds really give
better security, by investigating the technical features of four
prominent cloud projects (Eucalyptus, OpenNebula, Open-
Stack) which are also deployed as private clouds, and a small
project dedicated to the development of a private cloud
(openQRM). In all cases, we investigate the security of the
CCI.

For the CCI, we considered two scenarios: In Scenario 1,
the CCI is fully exposed to the Internet, whereas in Sce-

nario 2, a firewall is used to block direct access to the CCI
from the Internet. The latter may be seen as a straightfor-
ward “provisioning” of a cloud implementation for private
use.

Attacking Private Clouds.
Since private clouds are provisioned for use by a single en-
tity only, attacks on the virtualization layer may only be
performed by insiders, i. e. employees of the entity using
the cloud. We therefore concentrate on attacks on the CCI
itself, which can be accessed through a variety of APIs. In
this paper, we concentrate on the Web API, i. e. the API
accessible through a standard web browser.

On a high level, the success of some of our attacks even
in the presence of perimeter security mechanism like Fire-
walls can be explained as follows: We use a web browser
as our ”malicious insider” within the company network. The
browser receives instructions through port 80 (HTTP), which
is open in any firewall, and may transfer stolen data through
the same port.

The transformation of a ”trusted browser” into a ”mali-
cious insider” is done through standard web attacks: Either
we directly control browser actions (CSRF) invisible to the
user, or we execute malicious script code in the web interface
(XSS).

Attacks on Web Interfaces.
Web browsers are often used as the user’s interface to a
cloud: They are available for any operating system, the
markup (HTML5, XHTML), data (XML, JSON), script-
ing (JavaScript, XSLT) and style (CSS) languages are plat-
form independent, their communication protocols (HTTP,
HTTPS, WebSockets) should pass through any firewall, and
they are free-of-charge.

However, this wealth of features (which grows steadily)
comes at the price of enhanced vulnerabilities: Scripting
functionality may be misused through inserting malicious
JavaScript into a web page (XSS, Scriptless Attacks), auto-
matic rendering features may be misused to remotely control
the browser in a malicious way (CSRF), style languages may
be used to mask attacks (UI Redressing), and simple fire-
walls do not protect against these attacks. All these attacks
are described in Section 4.2.

By using the same browser both for browsing the Web
and for accessing security critical applications, attack vec-
tors may be carried from the web through the firewall to the
application, where they are executed.

Results.
Of the four systems investigated, we were able to break se-
curity of the web interfaces of Eucalyptus, OpenNebula, and
openQRM. In each of these systems, we found at least one
attack that also worked if access to the web interface was
restricted by a firewall blocking all direct access. All three
major systems were well designed, but the inclusion of a
direct data channel through the web browser to each VM
proved to be problematic. For openQRM, nearly no secu-
rity measures were in place. This seems to be an effect of
most discussions on cloud security concentrating on the VM
level, which does not raise awareness for the criticality of the
CCI. We reported all findings to the corresponding security
teams.

6

Figure 2: Successful XSS attack on Eucalyptus

Figure 3: Successful XSS attack on OpenNebula,
deployed with CCI hidden behind a firewall

Eucalyptus. Architecturally, Eucalyptus uses modern
JavaScript Model View Controller libraries to render (user
contributed) content, and is therefore well protected against
direct XSS attacks. However, it also uses the library
AngularJS, and since inputs to this library (in the form of
AngularJS expressions) is not completely sanitized, it is pos-
sible to execute arbitrary JavaScript in the context of the
Web CCI, both in Versions 4.0.0 and 4.0.1 (cf. Figure 2).
By having the ability to execute arbitrary scripts, we were
able to start and stop VMs. We were also able to read all
content displayed in the Web CCI, e. g. passwords.

OpenNebula. For OpenNebula, we found several severe
attacks. By injecting an arbitrary opening XML tag into
the name of a VM, we can make this VM inaccessible from
the web CCI. In addition to being able to execute arbitrary
script code in the Web CCI (which allowed us to start and
stop VMs, and to read critical data from the Web CCI,
like in the Eucalyptus case) we were able to take complete
control over existing VMs, and thus to read out the data
stored and processed in this VM (cf. Figure 3).

openQRM. In openQRM, no working security measures
for the Web CCI were in place. No CSRF protection was
used (thus attacks through a firewall become possible), and
a self-written XSS filter was easy to bypass. XSS vulnera-
bilities in the user Web CCI could easily be used against the
admin Web CCI, since both interface use the same domain
(and thus the Same Origin Policy does not prevent access).
In addition, multiple SQL injection vulnerabilities existed.

Contributions.
In a field study, we examined the security of Web CCIs
against classic and recent attacks discussed in the web secu-
rity community. Our findings are mixed, with one product
offering good protection (OpenStack), one product offering
medium security (Eucalyptus), and two products which fail
to protect VMs and data (OpenNebula, openQRM). This
shows that the significance of CCI security for overall Cloud
security is not completely understood yet. Our contributions
are:

• We present novel attacks on how to access a VM di-
rectly through the victim’s web browser. These attacks
combine standard web attacks with novel methods on
how to execute script code and to access data stored
in VMs.

• We were able to break security of three out of four
private cloud frameworks. For OpenNebula, we were
able to access data on running VMs, resulting in the
most severe of all attack scenarios. For openQRM,
vulnerabilities could be found on all levels.

• We discuss a technical definition of private clouds, with
respect to the Cloud Control Interface. In this defini-
tion, the CCI is not exposed to the Internet.

2. RELATED WORK
Most previous security analyzes of IaaS clouds concentrate
on detection and exploitation of VM co-location [27, 32, 13,
31, 35]. Co-located VMs are assigned to be hosted on the
same compute node within a cloud. The exploitation of
co-location focuses on the deployment scheduler of a cloud
management platform and the hypervisor layer used for vir-
tualization.

A security survey that involves all layers of cloud com-
puting including web attacks is given by Modi et al. [25].
Sempolinski and Thain [29] compare the structural concepts
of three cloud management platforms, namely Eucalyptus,
OpenNebula, and Nimbus. Two of these platforms coincide
with those we are analyzing; however, they do not focus on
security questions. Security analyzes with respect to operat-
ing system security of OpenStack and Eucalyptus are given
in [28] and [17].

In 2009, Gruschka and Lo Iacono investigated the secu-
rity of the SOAP based cloud control interface of Amazon’s
Elastic Compute Cloud (EC2) [16]. This work was extended
by Somorovsky et al. [30], in which the interfaces of Ama-
zon and Eucalyptus interfaces were compromised using both
Cross-Site-Scripting and XML based attacks.

An overview on Cross-Site-Scripting (XSS) can be found
in [21]. The basic idea and flavors of XSS are also pre-
sented in Section 4.2. Recently, novel XSS classes have been
described: Scriptless Attacks [18], where scripting function-
ality of novel HTML5 elements is misused, and mXSS [19],
where mutation features of the browser are used to change
harmless markup into a malicious script. Other attacks on
web applications like Cross-Site Request Forgery and UI-
Redressing are depicted in [34] and [26].

3. FORMAL MODEL
In this section, we give a formal model of our research object,
and the attacker model.

7

3.1 Modelling IaaS
For modelling IaaS, we follow [29]. IaaS systems typically
consist of the following components (cf. Figure 1).

Virtualization.
IaaS clouds2 are realized using virtualization technology.
This way, computing resources can be assigned to consumers
dynamically. However, at some point in the architecture,
real hardware has to supply the virtual resources. The task
of creating such a relation is done by a hypervisor, a software
that allocates computing resources from bare metal and as-
signs it to virtual resources. A Virtual Machine (VM) is an
aggregation of virtual computing resources, virtual memory
and storage, virtual networking, etc. For the consumer, a
virtual machine is indistinguishable from a real machine in
its behavior.

Cloud Management Platform.
A Cloud Management Platform (CMP) is a software product
that orchestrates a cloud infrastructure. An overview of a
CMP’s responsibilities is given in Figure 1.

1. The primary task of a CMP is to control its compute
nodes and the hypervisors on these nodes. To deter-
mine on which node a new VM is to be instantiated,
a CMP contains a scheduler that evaluates some pol-
icy for this decision. CMPs often include a component
that can dynamically resize the compute resources of
VMs or provide failover resilience for VMs.

2. Usually, virtual hard disks of VMs are not stored on
compute nodes since this would limit the flexibility of a
cloud installation. Instead, these images and volumes
are stored on a large external storage. From there a
CMP makes them available to the corresponding hy-
pervisors.

3. Once a VM is instantiated from a template, it lacks
necessary information like which IP address to use or
who has access rights to it. This information is pro-
vided through a process called contextualization, which
is carried out by the CMP.

4. All CMPs contain some interface where a Cloud Con-
trol Interface can attach.

Cloud Control Interface (CCI).
A CCI, as outlined before, is a self-service interface that al-
lows triggering and controlling actions like starting or stop-
ping VMs. These interfaces may be based on any standard-
ized technology (XML/SOAP, REST/HTTP, JSON, AJAX,
etc.). In this paper, we concentrate on one technology that
is offered in any cloud: We examine CCIs that are imple-
mented using a web browser as client software.

3.2 Modelling private clouds
Much has been written about private clouds, but a com-
plete formal definition is still missing. Available (partial)
definitions only concentrate on VM co-location. In this sec-
tion, we try to provide this definition for IaaS, and discuss
implications on different types of VMs.

2Since we only deal with IaaS, we will omit the cloud type
in the following

Private Clouds vs. Public Clouds.
Private and public clouds share the same technology; there
is no fundamental difference in the techniques employed. All
Cloud software stacks analyzed in this paper can be used in
both a public and a private cloud setup. Differences be-
tween private and public clouds must therefore be defined
through properties of the setup itself. The first main differ-
ence, which is mentioned in all previous definitions, is VM
co-location:

Definition 1 (VM co-location). In a public cloud,
Virtual Machines (VMs) of different tenants may be running
on the same physical host, whereas in a private cloud, all
VMs are be controlled by one entity.

Closer investigation of Definition 1 reveals that here only the
goal of a private cloud setup is defined: In a private cloud,
it should be guaranteed that VMs are indeed controlled by
a single entity only.

The second main difference is in the reachability of the
Cloud Control Interface (CCI) (cf. Figure 4): In a private
cloud, access to the CCI may be limited through network
perimeter controls (e. g. firewalls; NAT, VLAN), whereas in
a public cloud it may not. Please note that perimeter con-
trols may be applied to all other components of the Cloud,
regardless if it is public or private.

Definition 2 (Reachability of the CCI). In a pub-
lic cloud, the Cloud Control Interface (CCI) is reachable
from the Internet. In a private cloud, the CCI may only
be reachable from a well-defined, closed subnet, e.g. a com-
pany’s Intranet.

Remarks:

1. Please note that also the second definition does not de-
scribe a technical difference between private and pub-
lic clouds, only the audience that may perform attacks
on the CCI is different: For public clouds, all Inter-
net users may start web attacks, whereas in a private
cloud, this is limited to company employees.

2. Please note also that the reachability constraints for a
private cloud CCI are only a possible security measure:
They are not part of the Cloud Management Platforms
we analyzed, but may differ for each deployment.

Classification of (Private) Cloud VMs.
Virtual Machines (VMs) may have different network connec-
tivity (cf. Table 1): (1) no network connectivity, (2) connec-
tivity to a closed network, or (3) connectivity to the Inter-
net. In cases (2) and (3), they may either (a) be reachable
from the network (e.g. through HTTP of SSH), or (b) not
reachable.

3.3 Attacker Model
All attacks described in this paper are in the web attacker
model, i.e. they are practical attacks. The only prerequisite
of an attack in the web attacker model is that the victim
must visit a (malicious) webpage of the attacker. In case of
a private cloud, the URL of the CCI must also be known
to the attacker (for public clouds, it is known to the pub-
lic). The URL can e. g. be retrieved by reading company
documentation, emails, or public discussion forums. The at-
tacker does not need to be able to resolve the CCI’s domain

8

Network	 perimeter	

Cloud	 Management	
Pla5orm	 (CMP),	 e.g.	

OpenStack,	
Eucalyptus,	
OpenNebula	

VM	
	

VM	
	

VM	
	

Hypervisor	

OS	

Compute	 Node	 1	

VM	
	

VM	
	

VM	
	

Hypervisor	

OS	

Compute	 Node	 2	

VM	
	

VM	
	

VM	
	

Hypervisor	

OS	

Compute	 Node	 3	

...	

Persistent	 Data	
Storage	

2	

DHCP	
DNS	 3	

hIps://admin.cloud.tld	

Start	 new	 VM	
Store	 Data	 persistently	
Change	 SSH	 key	
Monitor	 all	 VMs	

4	

1	

Cloud	 Management	
Pla5orm	 (CMP),	 e.g.	

OpenStack,	
Eucalyptus,	
OpenNebula	

VM	
	

VM	
	

VM	
	

Hypervisor	

OS	

Compute	 Node	 1	

VM	
	

VM	
	

VM	
	

Hypervisor	

OS	

Compute	 Node	 2	

VM	
	

VM	
	

VM	
	

Hypervisor	

OS	

Compute	 Node	 3	

...	

Persistent	 Data	
Storage	

2	

DHCP	
DNS	 3	

hIps://admin.cloud.internal	

Start	 new	 VM	
Store	 Data	 persistently	
Change	 SSH	 key	
Monitor	 all	 VMs	

4	

1	

Network	 perimeter	

Figure 4: In a public cloud (left), VMs controlled by different tenants may be co-located on one physical
host, and the CCI is exposed to the Internet. In a private cloud (right), all VMs are controlled by employees
of one entity, and the CCI may be protected by network perimeters

public cloud private cloud

CCI Y N
Persistent Storage Y (partly) N
Virtual Network N N
VM Type (1) N N
VM Type (2) N N
VM Type (3) (a) Y, (b) N (a) Y, (b) N

Table 1: Accessibility of different Cloud components
from the Internet

name; the only requirement is that the browser of the victim
is able to resolve it. No further control over the network is
assumed; especially firewalls, network encryption, and other
standard protection mechanisms may be deployed.

If a CCI exposes vulnerabilities, a web attacker may be
able to execute script code in the context of the CCI (XSS),
may trigger actions at the CCI (CSRF), or may invisibly
embed the CCI into the malicious webpage (UI-Redressing).

Definition of Successful Attacks.
Since we are dealing with IaaS clouds, our main goal is to
get access to some VM in the cloud. More specifically, this
goal can be achieved with three levels of severity:

1. DoS-Level: Use or block resources of the cloud (e. g.
block a user from accessing VMs).

2. Control-Level: Alter the state of the cloud (e. g.
start or stop a used VM, modify accounts).

3. Compromise-Level: Take over a running VM, to-
gether with all data.

It is obvious that an attack in a higher level also allows at-
tacks of the previous levels. Compromise-level attacks thus
completely break cloud security, because an attacker can
access both cloud resources and cloud data. Note that a
Control-level attack does not necessarily allow an attacker
to compromise a VM. Even if the attacker is able to inject

e. g. a new SSH key into the victim’s account, the VM to
attack may have no network access (cf. Table 1) so that the
attacker cannot make use of the key.

4. TECHNICAL BACKGROUND
In this section, we give some technical background on our
research targets and on the different attack classes. Further-
more, we discuss valid an invalid attack goals in a private
cloud scenario.

4.1 Private Cloud CMPs
The field of CMPs is dominated by three open source projects,
which sometimes also have commercial spin-offs. We fur-
thermore analyzed a small project that is also used to deploy
private clouds. We decided to test the default configurations
of the open source versions, because they were available for
testing, and the results were comparable.

Eucalyptus.
Eucalyptus [5] emerged from a research project at the Uni-
versity of Santa Barbara and was commercialized in 2009.
Hewlett-Packard acquired Eucalyptus in September 2014.
The Eucalyptus Cloud is being used by a wide range of com-
mercial and academic clients, including defense contractors
and institutions such as Raytheon and the US Department
of Defense. Only the recent versions of Eucalyptus are fully
open source (GPLv3); older versions used proprietary com-
ponents such as support for certain hypervisors or network
storage systems. Eucalyptus mimics AWS, therefore Euca-
lyptus can manage either Amazon or Eucalyptus VMs. VM
instances can also be moved between the Amazon Elastic
Compute Cloud and a Eucalyptus private cloud.

OpenNebula.
OpenNebula [9] also started as a research project in 2005.
It is used by information technology companies like IBM,
Dell and Akamai as well as academic institutions and the
European Space Administrations (ESA). By relying on stan-

9

dard Linux tools as far as possible, OpenNebula reaches a
high level of customizability and flexibility in hypervisors,
storage systems, and network infrastructures. OpenNebula
offers an XML-RPC interface to control a cloud. Other
interfaces (e.g. Ruby and Java interfaces as well as an
AWS-compatible interface) are wrapped around this inter-
face. Sunstone, OpenNebula’s web interface, is also built
around the XML-RPC interface. OpenNebula is distributed
using the Apache-2 license.

OpenStack.
The OpenStack project [12] seeks to offer an alternative to
Amazon Web Services (AWS) and sees itself in direct com-
petition. OpenStack tries to provide as much compatibility
to Amazon’s external interfaces as possible. It uses a mod-
ular architecture approach to support scalability as well as
a broad variety of hypervisors, storage systems, network in-
frastructures, etc. The module that is primarily viewed at in
this research is Horizon, OpenStack’s web interface compo-
nent. OpenStack is available under Apache-2 license terms.

openQRM.
In 2003, openQRM [11] started as a commercial datacenter
management solution, originally developed by Qlusters, Inc.
settled in Palo Alto, California. Today, openQRM is an IaaS
system distributed by openQRM Enterprise GmbH. One can
use a free community edition or an enterprise edition with
professional support and additional features. openQRM pro-
vides two separate web interfaces: An administration inter-
face for privileged users and a cloud user interface for regular
users. Furthermore, other interfaces like SOAP exist. The
community edition of openQRM is available under GPL li-
cense terms.

4.2 Attacks on Web Interfaces
Three classes of attacks on web applications will be de-
scribed in this section: code injection (XSS), remote control
(CSRF) and layout (UI-Redressing).

Cross-Site Scripting (XSS).
To perform a Cross-Site Scripting (XSS) attack, an adver-
sary tries to inject his own malicious code into a webpage
delivered by the target web application. The latter is neces-
sary because the Same Origin Policy (SOP) restricts script
access to web content having the same origin. Thus only
if the code is either embedded in (inline scripts) or loaded
into the webpage, it will have (read and write) access to the
contents of this webpage (e. g. session cookies, form fields,
etc.).

XSS comes in three flavors: (1) In a reflected XSS attack,
the adversary first sends the malicious code to the target
server (e. g. as a query string in a GET request, or in the
body of a POST request) where it is embedded in a dy-
namically generated webpage. As soon as this webpage is
rendered in the browser, the code is executed. (2) In a stored
XSS attack, the adversary stores the malicious code in some
subpage of the web application (e. g. discussion forum), and
when this subpage is requested and rendered in the browser,
the code is executed. (3) DOMXSS [23] relies on the fact
that the content of a webpage may be changed dynamically
by the browser itself, who may copy information from e. g.
the document URL into the document itself. In contrast
to the first two types of XSS, DOMXSS may not be de-

tectable by the server, since the malicious script may never
pass through the server.

Today, the most important countermeasure against XSS
is server-side filtering, although some powerful client-side
filters (e. g. NoScript for Mozilla Firefox [7]) exist.

Cross-Site Request Forgery (CSRF).
Some actions of a web browser can be triggered without user
interaction; e. g. if the browser parses an <img src=

"http://somedomain.org/pic.jpg" /> tag, it automatically
tries to load pic.jpg from somedomain.org by sending an
HTTP GET request.

If <img src="http://pizza.org/order.php?type=13&

deliver=attacker"/> is parsed, an HTTP GET request will
be sent to pizza.org ordering pizza number 13, which will
be delivered to the attacker’s address. If we assume that the
victim is logged in to pizza.org, then simply viewing the
webpage of the attacker will send the pizza to the attacker,
and the bill to the victim.

The possible impact of CSRF attacks has been shown
in [34], where an attack was shown to empty online bank-
ing accounts with a complex CSRF attack. CSRF attacks
can be mitigated by deploying anti-CSRF-tokens, which are
in essence random values embedded into form fields. Only
HTTP requests containing the correct nonce value will be
executed by the server.

Clickjacking and UI-Redressing.
Modern web browsers offer a large variety of design fea-
tures, including transparency options for complete HTML
frames. A basic example for a UI-Redressing attack is to
load the target webpage as an invisible iFrame, and to place
an innocent-looking visible page below it. The visible page
may trick the user into performing mouse clicks, drag&drop
operation, or into entering text, but all these actions will be
caught by the invisible frame.

Through an X-Frame-Options HTTP header, a webpage
can communicate to the browser whether it may be loaded as
an iFrame into another page, and under which conditions.

4.3 Attacks on Clouds
We do not count each successful attack on the CCI web
interface as a successful attack on the private cloud. Instead,
we have to single out those attacks that can be performed
without direct access to the CCI.

Valid Web Attacks on Public Clouds.
In web application scenarios, the compromise of a session
cookie often equals a compromise of the web application
itself: It grants the attacker full access to the victim’s ac-
count. This also holds for the CCI of public clouds. For
private clouds, even if we are able to steal the cookie, we
may not be able to use it, because we have no direct access
to the CCI.

Likewise, for a stored XSS attack, the adversary needs ac-
cess to some part of the CCI. In a public cloud, this may
e. g. be configuration data for an account owned by the ad-
versary, or a message posted in a discussion forum. This
attack is applicable to private clouds if we do consider in-
sider attacks, or if the victim creates the XSS as result of
Clickjacking or if the cloud imports data from somewhere,
e. g. emails, VM descriptions, or images.

10

Valid Web Attacks on Private Clouds.
Once a malicious webpage is loaded into the browser of
the victim, markup contained therein may trigger actions
from the victim’s browser to the CCI via CSRF. These ac-
tions will typically be sent as GET or POST requests inside
the company’s network, and do not have to cross perimeter
boundaries anymore. As a precondition, the attacker needs
to know the domain name of the CCI to be able to call
it through an URL. Alternatively, scanning the private IP
address space where the CCI is located may be feasible.

A malicious script can also send HTTP requests to arbi-
trary URLs to establish a communication channel through
the network perimeter. The attacker may then send com-
mands to the malicious script through HTTP responses.
One example for such a script is BeEF [2]. As a precondition,
the attacker needs a reflected or DOM XSS vulnerability to
install such a script.

Furthermore, once a malicious webpage is loaded into the
victim’s browser, it may load the CCI as an invisible frame,
and may redirect user actions to the CCI. We have the
same preconditions as for CSRF plus a permissive (or no)
X-Frame-Options-Header.

If the CCI allows setting specific data that is forwarded
to a VM, it could be possible that an attacker manipulates
a VM so that it leaks information to the attacker: The at-
tacker could reconfigure the VM so that the attacker is able
to connect to the VM if it is accessible from the Internet.

Points of Attack in Cloud Setups.
The number of valid points of attack on the CCI depends
on the features of the CCI: Whatever is done with the help
of the browser may be subject to a web attack.

If we are able to steal or overwrite the victim user’s pass-
words, we cannot directly access the account, but we can use
this additional information in one of the previous attacks.
Especially, we can perform these attacks even if the victim
does not have an active session, i.e. is not currently logged
in. If we overwrite a password, a user may however detect
this.

If we can steal a private SSH key or overwrite/generate
a key pair, we may directly access VMs that are accessi-
ble from the Internet. If VMs are started, stopped, and
rebooted through the CCI, or if their configuration can be
changed, these actions may also be triggered by an attacker.

If the screen of a VM is displayed in a browser, we can read
all data from this screen. If the screen access is realized by a
VNC remote control in an HTML5 canvas, we can also inject
arbitrary data into the VM. Under certain circumstances,
this includes installing software.

5. METHODOLOGY
We developed a systematic methodology for testing the CCI
of private clouds. All tests were done manually; no auto-
mated tests were involved. We installed all three cloud sys-
tems under investigation on our own hardware, and set up
different accounts.

The developers of Eucalyptus provide a FastStart script [4]
that installs the most recent stable version of Eucalyptus us-
ing KVM as hypervisor. Since we wanted to stick as close
to default settings as possible, we set up a fresh CentOS 6.5
machine – the operating system required by FastStart – and
used the script to install a private Eucalyptus cloud. We
tested version 4.0.0 and 4.0.1 of Eucalyptus for this paper.

The OpenNebula project offers quick start guides and
package repositories for common Linux distributions. Fol-
lowing a quick start guide for OpenNebula 4.6 with KVM as
hypervisor [10], we installed a private OpenNebula cloud on
a fresh Ubuntu 14.04 machine. The version tested for this
paper is OpenNebula 4.6.1.

The OpenStack Foundation maintains DevStack, a shell
script to build complete OpenStack environments for devel-
opment and testing [3]. Since it is a tool for developers, it is
designed to install the latest (unstable) development version.
With a configuration file that is documented in the FAQ of
DevStack, one can also install a stable version. We decided
to install the stable version 2014.1 (codename Icehouse) on
a fresh Ubuntu 14.04 machine.

Our installation of openQRM followed a Howto-Guide
provided by the developers [6]. We installed it on a fresh
Debian Wheezy system. The version tested for this paper is
5.1 Community.

5.1 Existing Countermeasures
In a second step, we checked for existing countermeasures
by inspecting delivered HTTP headers and HTML code.

Security-Related HTTP headers.
Some attacks on web applications like UI-Redressing can be
mitigated by using HTTP headers. Therefore, we started
by analyzing the presence of security-related HTTP headers.
The results are shown in Table 2. Only X-Frame-Options

is used by OpenStack and Eucalyptus; both set its value to
SAMEORIGIN. No other security headers are used.

openQRM uses HTTP Basic authentication. The other
three web interfaces rely on HTTP cookies to identify a
user’s session. However, only OpenNebula and OpenStack
set the HttpOnly parameter for their cookies. Eucalyptus
does not protect its session cookies from malicious JavaScript.

CSRF-Protection.
Eucalyptus and OpenStack protect their web interfaces with
a token against CSRF. In the case of Eucalyptus, the token is
transmitted in a hidden form field and checked by the server.
OpenStack in contrast relies on the Double Submit Cookie
mechanism of the underlying Django-server. This technique
sends a CSRF-token both as cookie and as hidden form field.
The server then only checks whether these two tokens match,
but not if the matching value equals the value sent to the
client. OpenNebula and openQRM did not make use of a
CSRF-protection and therefore make themselves vulnerable
to CSRF-attacks.

XSS-Protection.
Of the four web interfaces, only openQRM relies on HTTP-
GET parameters. If no HTTP-GET parameters are used,
this reduces the attack surface for reflected XSS attacks.
However, we were able to find reflected XSS vulnerabilities
in the web interface of openQRM and Eucalyptus 4.0.1.

We were able to identify stored XSS vulnerabilities for all
four web interfaces, despite some countermeasures. E. g., the
interface of Eucalyptus is built upon AngularJS [1], a web
application framework that is designed to provide basic pro-
tection against XSS. However, we were able to circumvent
this protection (cf. Section 6).

11

HTTP Header Eucalyptus OpenStack OpenNebula openQRM

Content-Security-Policy N N N N
X-Content-Type-Options N N N N
X-Frame-Options Y Y N N
X-XSS-Protection N N N N

Table 2: Security-related HTTP headers set by the web interfaces of cloud management platforms

5.2 Accessibility of VMs through the CCI
Since clouds manage virtual machines, we looked for fea-
tures that allow reaching the VMs in the cloud. OpenNeb-
ula, OpenStack, and openQRM combine their web interfaces
with noVNC [8], an HTML5-based VNC client. This way,
a user can see a VMs display output and send input com-
mands (keyboard, mouse) to that VM. noVNC is based on
HTML5 WebSockets for the connection and on the canvas

element for rendering the output. Eucalyptus does not in-
clude a full VNC client, but it allows reading the console
output of a VM.

At a first glance, noVNC and console output come handy
for the initial setup of a VM or for debugging. However,
the direct access to the VM through the web interface car-
ries the risk that an attacker is able to steal data. For
example in case of noVNC, once access to the web inter-
face (e. g. by XSS) is established, the attacker can use the
canvas.toDataURL() function to get a screenshot of a VM.
Furthermore, the attacker could register event handlers for
keystroke events to capture the victim’s input.

5.3 Manipulating a VM
Once the CCI of a CMP allows reaching the VMs in the
cloud, we looked for ways to manipulate data on the VMs.
All CMPs use some mechanism to provide their VMs with
contextualization information. This information is often se-
curity relevant, for example if the contextualization informa-
tion carry SSH public keys that are set as authorized keys
for the root account of a VM. If an attacker is able to sub-
stitute contextualization information, access to the VM or
the data on it is possible.

However, in practice contextualization information is of-
ten read only after a VM has been instantiated. Therefore,
an attacker could only influence newly created VMs, not
VMs in use.

Another way to manipulate VMs is the noVNC interface.
If controlling this interface is feasible, the attacker can dis-
patch keystroke events to it that are sent to the VM as
keyboard input.

6. ATTACKS
In this section, we present vulnerabilities we found and demon-
strate exploits that attack these vulnerabilities.

6.1 Eucalyptus Sandbox Bypass
Eucalyptus employs most modern JavaScript Model View
Controller libraries to render the content that is being sent
to the user’s browser. This architectural aspect guarantees
for a security model that is robust against XSS attacks.

Our security tests however showed, that this concept of
rendering and securing user-controlled data was flawed be-
cause of a string reliance on the security promises the An-
gularJS library gives. AngularJS applications often mix
user-controlled content into so-called AngularJS expressions.

Those expressions execute a limited and scoped subset of
JavaScript and are thought to be secure from injections.

The security of AngularJS expressions is built upon the
AngularJS sandbox – a combination of a string-parser and
several object checks that assure that the code to be exe-
cuted does not violate any constraints and is considerably
save to be evaluated. Based on a contribution by J. Horn [20],
a bypass for this sandbox was tested against the AngularJS
version used by Eucalyptus. It was found that the version
in place is indeed vulnerable and by injecting the AngularJS
expression in Listing 1, a user can gain full control over the
client-side code that is executed.

{{’abc ’.sub.call.call (({})[’constructor ’].

getOwnPropertyDescriptor ((’abc ’).sub.

__proto__ ,’constructor ’).value ,0,’

location=name ’)()}}

Listing 1: AngularJS expression used to execute
remote code in Eucalyptus

The expression essentially bypasses two different checks
installed by the AngularJS sandbox and manages to get ac-
cess to the JavaScript Function constructor – a function
that in return accepts arbitrary strings to be executed in the
global scope of the loaded document. This is being done by
taking an arbitrary string and accessing one of its methods,
accessing the call() method and, given the used parame-
ters, returning the mentioned Function constructor. By not
accessing the constructor, the sandbox is being bypassed,
as it does not check return values and only direct access.
This returned object is then again called indirectly to avoid
the sandbox checks another time. The length restrictions
the Eucalyptus platform imposes can be bypassed by using
window.name to store the payload.

With Eucalyptus 4.0.1, the shipped version of AngularJS
has been updated to fix this bug. As an additional protec-
tion, ’’ in user input is replaced by ’ ’ which defuses An-
gularJS expressions. However, in a second examination we
found out that this does not happen platform-wide. Some
input field such as the name of a key pair remained unpro-
tected. Using an AngularJS sandbox bypass discovered by
M. Karlsson [22], we were again able to execute code in the
context of the Management Console. Since the name of a key
pair is also used in URLs (like https://server/keypairs/

[keyname]) the XSS can be used in a reflected way so that
a private cloud setup could be attacked with it.

Control-Level Attack on Eucalyptus.
Since the above sandbox bypass for Eucalyptus 4.0.1 is a
reflective XSS, Control-level attacks on a private Eucalyptus
cloud are possible. Once the attacker can execute arbitrary
JavaScript code, it is possible to create new VMs as well as
start or stop existing ones.

12

https://server/keypairs/[keyname]
https://server/keypairs/[keyname]

Furthermore, the attacker can steal data from a VM. Eu-
calyptus offers a feature to read the console output of a VM
for debugging. One cannot send commands to a VM this
way, but if the VM outputs sensitive information (e. g. de-
fault login credentials) to the console, they can be stolen.
We implemented a proof of concept exploit for Eucalyptus
4.0.0 that demonstrates the attack. A video of the attack is
available3. Since the success of the attack depends on fac-
tors the attacker cannot influence, it is no Compromise-level
attack. However, the risk that data could be stolen this way
exists.

6.2 Stored XSS on OpenStack
Our security tests showed that OpenStack Horizon is ro-

bust and provides no attack-surface via content reflected
from user-controlled GET parameters. The majority of data
that a user can enter will be stored and reflected safely. This
means, that a user can enter critical characters but upon
displaying the result as part of the HTML of the Open-
Stack Management Interface, the data is encoded and es-
caped properly and no XSS attacks are possible. Therefore,
we were not able to find an attack if OpenStack is used to
set up a private cloud.

We did however identify an interface where no adequate
escaping is used. With this interface injecting persistent XSS
payload such as the string <svg onload=alert(1)> is pos-
sible. The vulnerability resides in the interface where Host
Aggregates could be created. This interface is only available
to administrators; thus, only an administrator could attack
other administrators with it. For this reason, we think this
XSS is not exploitable in practice.

6.3 OpenNebula: Denial-of-Service on VM
At its backend, OpenNebula manages VMs with XML

documents. A sample for such an XML document is given
in Listing 2.

<VM>

<ID>0</ID>

<NAME>My VM</NAME>

<PERMISSIONS >...</PERMISSIONS >

<MEMORY >512</MEMORY >

<CPU>1</CPU>

...

</VM>

Listing 2: Sample XML document describing a VM
in OpenNebula

OpenNebula 4.6.1 contains a bug in the sanitization of
input for these XML documents: Whenever a VM’s name
contains an opening XML tag (but no corresponding closing
one), an XML generator at the backend automatically in-
serts the corresponding closing tag to ensure well-formedness
of the resulting document. However, the generator outputs
an XML document that does not comply with the XML
schema OpenNebula expects. Listing 3 shows the structure
that is created after renaming the VM to My <x> VM. The
generator closes the <x> tag, but not the <NAME> tag. At the
end of the document, the generator closes all opened tags
including <NAME>.

3https://html5sec.org/videos/euca_console.mp4

<VM>

<ID>0</ID>

<NAME>My <x> VM</x>

<PERMISSIONS >...</PERMISSIONS >

<MEMORY >512</MEMORY >

<CPU>1</CPU>

...

</NAME>

</VM>

Listing 3: Sample XML document that results after
the XML generator handled an unclosed element in
the VM’s name

OpenNebula saves the incorrectly generated XML docu-
ment in a database. The next time the OpenNebula core
retrieves information about that particular VM from the
database the XML parser is mixed up and runs into an er-
ror because it only expects a string as name, not an XML
tree. As a result, the web-interface component of Open-
Nebula (called Sunstone) cannot be used to control the VM
anymore. The Denial-of-Service can only be reverted from
the command line interface of OpenNebula.

This bug can be triggered by a CSRF-attack, which means
that it is a valid attack against a private cloud: By luring
a victim onto a maliciously crafted website while logged in
into Sunstone, an attacker can make all the victim’s VMs
uncontrollable via Sunstone. Since the attack blocks cloud
resources from being used, it forms a DoS-level attack. A
video of the attack is available4.

6.4 OpenNebula: Compromise-Level Attack
Since CSRF protection is disabled in the version of Open-
Nebula we analyzed, a severe Compromise-level attack was
possible. This proof-of-concept attack gives us root access to
a victim’s VM, which means that we can read and write all
data, install software, etc. An attacker needs the following
information for a successful attack.

ID of the VM to attack.
OpenNebula’s VM ID is a global integer that is increased
whenever a VM is instantiated. The attacker may simply
guess the ID. Once the attacker can execute JavaScript code
in the scope of Sunstone, it is possible to use OpenNebula’s
API to retrieve this ID based on the name of the desired
VM or its IP address.

Operating system & bootloader.
There are various ways to get to know a VMs OS, apart
from simply guessing. For example, if the VM runs a pub-
licly accessible webserver, the OS of the VM could be leaked
in the HTTP-Header Server [14]. Another option would be
to check the images or the template the VM was created
from. Usually, the name and description of an image con-
tains information about the installed OS, especially if the
image was imported from a marketplace.

Since most operating systems are shipped with a default
bootloader, making a correct guess about a VMs bootloader
is feasible. Even if this is not possible, other approaches can
be used (see below).

4https://html5sec.org/videos/one_dos.mp4

13

https://html5sec.org/videos/euca_console.mp4
https://html5sec.org/videos/one_dos.mp4

Keyboard layout of the VM’s operating system.
As with the VMs bootloader, making an educated guess
about a VM’s keyboard layout is not difficult. For example,
it is highly likely that VMs in a company’s cloud will use
the keyboard layout of the country the company is located
in.

6.4.1 Overview of the Attack
The key idea of this attack is that neither Sunstone nor
noVNC check whether keyboard related events were caused
by human input or if they were generated by a script. This
can be exploited so that gaining root access to a VM in
OpenNebula requires five steps:

1. Using CSRF a persistent XSS payload is deployed.

2. The XSS payload controls Sunstone’s API.

3. The noVNC window of the VM to attack is loaded into
an iFrame.

4. The VM is restarted using Sunstone’s API.

5. Keystroke-events are simulated in the iFrame to let the
bootloader open a root shell.

The following sections give detailed information about each
step.

Executing Remote Code in Sunstone.
In Sunstone, every account can choose a display language.
This choice is stored as an account parameter (e. g. for En-
glish LANG=en_US). In Sunstone, the value of the LANG pa-
rameter is used to construct a script tag that loads the
corresponding localization script. For English, this creates
the following tag:

<script src="locale/en_US/en_US.js?v=4.6.1

" type="text/javascript">

</script >

Setting the LANG parameter to a different string directly ma-
nipulates the path in the script tag. This poses an XSS vul-
nerability. By setting the LANG parameter to LANG="onerror

=alert(1)//, the resulting script tag looks as follows:

<script src="locale/"onerror=alert (1) ///"

onerror=alert (1)//.js?v=4.6.1" type="

text/javascript"></script >

For the web browser, this is a command to fetch the script
locale/ from the server. However, this URL points to a
folder, not a script. Therefore, what the server returns is
no JavaScript. For the browser, this is an error, so the
browser executes the JavaScript in the onerror statement:
alert(1)5. The rest of the line (including the second alert

(1)) is treated as comment due to the forward slashes. When
a user updates the language setting, the browser sends an
XMLHttpRequest of the form

{"action":{"perform":"update","params":{"

template_raw":"LANG=\"en_US\""}}}

to the server6. Forging a request to Sunstone from some
other web page via the victim’s browser requires a trick since

5Executing alert(1) is commonly used to prove that XSS
exists.
6The original request contains more parameters. Since these
parameters are irrelevant for the technique, we omitted them
for readability.

one cannot use an XMLHttpRequest due to restrictions en-
forced by the browser’s Same-Origin-Policy. Nevertheless,
using a self-submitting HTML form, the attacker can let
the victim’s browser issue a POST request that is similar
enough to an XMLHttpRequest so that the server accepts
it.

An HTML form field like

<input name=’deliver ’ value=’attacker ’ />

is translated to a request in the form of

deliver=attacker

To create a request changing the user’s language setting to
en_US, the HTML form has to look like

<input name=’{"action":{"perform":"update"

,"params":{"template_raw":"LANG ’ value

=’\"en_US\""}}}’ />

Notice that the equals sign in LANG=\"en_US\" is inserted
by the browser because of the name=value format.

Using this trick, the attacker sets the LANG parameter for
the victim’s account to "onerror=[remote code]//, where
[remote code] is the attacker’s exploit code. The attacker
can either insert the complete exploit code into this param-
eter (there is no length limitation) or include code from a
server under the attacker’s control. Once the user reloads
Sunstone, the server delivers HTML code to the client that
executes the attacker’s exploit.

Due to the overwritten language parameter, the victim’s
browser does not load the localization script that is required
for Sunstone to work. Therefore, the attacker achieved code
execution, but Sunstone breaks and does not work anymore.
For this reason, the attacker needs to set the language back
to a working value (e. g. en_US) and reload the page in an
iFrame. This way Sunstone is working again in the iFrame,
but the attacker can control the iFrame from the outside.
In addition, the attack code needs to disable a watchdog
timer outside the iFrame that checks whether Sunstone is
correctly initialized.

From this point on, the attacker can use the Sunstone API
with the privileges of the victim. This way, the attacker can
gather all required information like OpenNebula’s internal
VM ID and the keyboard layout of the VM’s operating sys-
tem from Sunstone’s data-structures based on the name or
the IP address of the desired VM.

Compromising a VM.
Using the Sunstone API the attacker can issue a command
to open a VNC connection. However, this command calls
window.open, which opens a new browser window that the
attacker cannot control. To circumvent this restriction, the
attacker can overwrite window.open with a function that
creates an iFrame under the attacker’s control.

Once the noVNC-iFrame has loaded, the attacker can
send keystrokes to the VM using the dispatchEvent func-
tion. Keystrokes on character keys can be simulated using
keypress events. Keystrokes on special keys (Enter, Tab,
etc.) have to be simulated using pairs of keydown and keyup

events since noVNC filters keypress events on special keys.
To get root access to a VM the attacker can reboot a

victim’s VM using the Sunstone API and then control the
VM’s bootloader by interrupting it with keystrokes. Once
the attacker can inject commands into the bootloader, it is
possible to use recovery options or the single user mode of

14

Linux based operating systems to get a shell with root privi-
leges. The hardest part with this attack is to get the timing
right. Usually, one only has a few seconds to interrupt a
bootloader. However, if the attacker uses the hard reboot
feature, which instantly resets the VM without shutting it
down gracefully, the time between the reboot command and
the interrupting keystroke can be roughly estimated.

Even if the bootloader is unknown, it is possible to (1) use
a try-and-error approach. Since the variety of bootloaders
is small, one can try for one particular bootloader and reset
the machine if the attack was unsuccessful. Alternatively,
one can (2) capture a screenshot of the noVNC canvas of
the VM a few seconds after resetting the VM and determine
the bootloader.

A video of the attack is available7. The browser on the
right hand side shows the victim’s actions. A second browser
on the left hand side shows what is happening in OpenNeb-
ula. The console window on the bottom right shows that
there is no user-made keyboard input while the attack is
happening.

6.5 XSS on openQRM
The web interface of openQRM displays message boxes about
successful actions of the user and the content of these boxes
is controllable via HTTP GET-parameter. However, the
XSS filter applied by openQRM is insufficient to block script
execution. If the URL

https :// server/openqrm/base/index.php?base

=event&event_msg=<scr <script >ipt >alert

(1)</sc </ script >ript >

is opened by the victim, an attacker can inject arbitrary
code. Since the attacker can now use the access privileges
of the victim, performing Control-level attacks is possible.

7. RESPONSIBLE DISCLOSURE
All bugs found in this research were secretly reported to the
corresponding developers. As reaction to our report, Open-
Nebula published a maintenance release 4.6.2, in which the
developers removed the XML sanitization bug and intro-
duced a CSRF protection. The bugs in Eucalyptus 4.0.0 and
4.0.1 were filed under CVE-2013-4770 and CVE-2014-5039.
They have been fixed with Eucalyptus 4.0.2. The persistent
XSS bug in OpenStack has been filed under CVE-2014-3594.
It has been fixed in OpenStack Havana (2013.2.4), Open-
Stack Icehouse (2014.1.2), and the development version of
OpenStack Juno (Juno-3).

The security bugs found in openQRM have been confirmed
by the developers. Currently, no fixes have been published
yet.

8. RECOMMENDATIONS
The following general recommendations can be made for im-
proving the security of private cloud deployments:

• Restrict access to the CCI. Most of the bugs we found
were stored XSS vulnerabilities. By restricting access
to the CCI, such attacks are limited to insiders. If
remote administration of the CCI is required, either a
VPN can be used, or TLS can be deployed with mutual
authentication (i. e. client certificates).

7https://html5sec.org/videos/one_root.mp4

• Apply countermeasures to all known types of web at-
tacks. All but one system did a good job here, with the
one exception of the missing CSRF protection in Open-
Nebula. The use of Content Security Policy should be
considered as an option.

More specifically, the attacks presented in this paper can be
mitigated on the part of the user, the administrator, or the
developer. Some of the countermeasures however prevent
attacks at the expense of usability.

Mitigation Actions for a User.
Users can protect themselves from CSRF by using separate
browsers for using a cloud’s web interface and browsing the
web. Since a separate browser does not help against UI-
Redressing and Clickjacking, we furthermore recommend
using a powerful client-side filter like the aforementioned
NoScript for Mozilla Firefox [7]. Unfortunately, configur-
ing strong filter software correctly is hard for unexperienced
users.

Mitigation Actions for an Administrator.
At first, administrators of a CMP have to be aware that run-
ning a private behind a company’s network perimeter does
not let all security risks vanish. To minimize the risk, a CMP
should always be updated to the latest stable release. Sec-
ondly, administrators of a private cloud should have a look
on the wire communication of their web interfaces and de-
cide whether certain security related HTTP headers should
be used. For example, an X-Frame-Options header can be
easily added using a server side proxy. Furthermore, admin-
istrators should decrease the validity period of sessions to
reduce the likeliness that a session of a user who forgot to
log out is exploited.

Mitigation Actions for a Developer.
Developers of cloud management platforms have to keep web
attacks in mind when developing a web interface, even if that
web interface is not meant to be publicly accessible. As our
results show, using the victim’s browser behind the network
protection perimeter as relay for attacks poses a realistic
threat. Furthermore, the rights management should always
consider the possibility that an attacker might control an
account in the private cloud. Since a cloud management
web interface is a single centralized place where all users –
consumers as well as administrators – use the same func-
tionality, privilege escalation attacks are very powerful.

Developers should not leave the task to add security re-
lated HTTP headers to administrators since some headers
need to be supported by the web interface’s code. Especially
Content-Security-Policy allows enforcing fine-grained se-
curity settings; however, the code structure of the web ap-
plication has to follow some constraints so that security is
enhanced while functionality is retained.

Furthermore, we recommend that tools like noVNC can-
not be used unless a user confirms that the action was not
started by some malicious JavaScript. This check could be
realized by a CAPTCHA [33] or requiring the user to enter
a password.

9. REFERENCES
[1] AngularJS Home Page. [online]

http://www.angularjs.org/.

15

https://html5sec.org/videos/one_root.mp4
http://www.angularjs.org/

[2] BeEF Home Page. [online] http://beefproject.com/.

[3] DevStack Home Page. [online] http://devstack.org/.

[4] Eucalyptus FastStart. [online]
https://www.eucalyptus.com/install.

[5] Eucalyptus Home Page. [online]
http://www.eucalyptus.com/.

[6] Howto: Install openQRM 5.1 on Debian Wheezy.
[online] http://openqrm-enterprise.com/
resources/documentation-howtos/howtos/

install-openqrm-51-on-debian-wheezy.html.

[7] NoScript Home Page. [online] http://noscript.net/.

[8] noVNC Home Page. [online]
http://kanaka.github.io/noVNC/.

[9] OpenNebula Home Page. [online]
http://opennebula.org/.

[10] OpenNebula on Ubuntu 14.04 and KVM. [online]
http://docs.opennebula.org/4.6/design_and_

installation/quick_starts/qs_ubuntu_kvm.html.

[11] OpenQRM Home Page. [online]
http://www.openqrm-enterprise.com/.

[12] OpenStack Home Page. [online]
http://openstack.org/.

[13] Gorka Irazoqui Apecechea, Mehmet Sinan Inci,
Thomas Eisenbarth, and Berk Sunar. Fine grain
cross-vm attacks on xen and vmware are possible!
IACR Cryptology ePrint Archive, 2014:248, 2014.

[14] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard), June 1999. Obsoleted by RFCs 7230, 7231,
7232, 7233, 7234, 7235, updated by RFCs 2817, 5785,
6266, 6585.

[15] International Organization for Standardization.
Information technology – cloud computing – overview
and vocabulary. ISO 17788:2014, ISO, Geneva,
Switzerland, 2014.

[16] Nils Gruschka and Luigi Lo Iacono. Vulnerable cloud:
Soap message security validation revisited. In Web
Services, 2009. ICWS 2009. IEEE International
Conference on, pages 625–631. IEEE, 2009.

[17] Marjan Gusev, Sasko Ristov, and Aleksandar
Donevski. Security vulnerabilities from inside and
outside the eucalyptus cloud. In Proceedings of the 6th
Balkan Conference in Informatics, pages 95–101.
ACM, 2013.

[18] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and
J. Schwenk. Scriptless attacks–stealing the pie without
touching the sill. In ACM Conference on Computer
and Communications Security (CCS), 2012.

[19] Mario Heiderich, Jörg Schwenk, Tilman Frosch, Jonas
Magazinius, and Edward Z. Yang. mxss attacks:
Attacking well-secured web-applications by using
innerhtml mutations. In ACM Conference on
Computer and Communications Security (CCS), 2013.

[20] Jann Horn. AngularJS Sandbox Bypasses. [online]
https://code.google.com/p/mustache-security/

wiki/AngularJS#Sandbox_Bypasses.

[21] Martin Johns. Code Injection Vulnerabilities in Web
Applications-Exemplified at Cross-site Scripting. PhD
thesis, University of Passau, 2011.

[22] Mathias Karlsson. AngularJS 1.2.19-1.2.23 / >
1.3.0-beta.14. [online] https://code.google.com/p/
mustache-security/wiki/AngularJS#AngularJS_1.

2.19-1.2.23_/_%3E_1.3.0-beta.14.

[23] Amit Klein. DOM based cross site scripting or XSS of
the third kind. http://www.webappsec.org/
projects/articles/071105.shtml, 2005.

[24] Peter Mell and Tim Grance. The NIST definition of
cloud computing. NIST Special Publication 800-145,
2011.

[25] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Avi
Patel, and Muttukrishnan Rajarajan. A survey on
security issues and solutions at different layers of
cloud computing. The Journal of Supercomputing,
63(2):561–592, 2013.

[26] Marcus Niemietz and Jörg Schwenk. Ui redressing
attacks on android devices. Black Hat Abu Dhabi,
2012.

[27] Thomas Ristenpart, Eran Tromer, Hovav Shacham,
and Stefan Savage. Hey, you, get off of my cloud:
exploring information leakage in third-party compute
clouds. In ACM Conference on Computer and
Communications Security (CCS), pages 199–212.
ACM, 2009.

[28] Sasko Ristov, Marjan Gusev, and Aleksandar
Donevski. Openstack cloud security vulnerabilities
from inside and outside. In CLOUD COMPUTING
2013, The Fourth International Conference on Cloud
Computing, GRIDs, and Virtualization, pages
101–107, 2013.

[29] Peter Sempolinski and Douglas Thain. A comparison
and critique of eucalyptus, opennebula and nimbus. In
CloudCom, pages 417–426, 2010.

[30] Juraj Somorovsky, Mario Heiderich, Meiko Jensen,
Jörg Schwenk, Nils Gruschka, and Luigi Lo Iacono. All
Your Clouds are Belong to us – Security Analysis of
Cloud Management Interfaces. In The ACM Cloud
Computing Security Workshop (CCSW), October
2011.

[31] Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and
Cyrille Artho. Memory deduplication as a threat to
the guest os. In Proceedings of the Fourth European
Workshop on System Security, page 1. ACM, 2011.

[32] Venkatanathan Varadarajan, Thawan Kooburat,
Benjamin Farley, Thomas Ristenpart, and Michael M
Swift. Resource-freeing attacks: improve your cloud
performance (at your neighbor’s expense). In ACM
Conference on Computer and Communications
Security (CCS), pages 281–292. ACM, 2012.

[33] Luis Von Ahn, Manuel Blum, and John Langford.
Telling humans and computers apart automatically.
Communications of the ACM, 47(2):56–60, 2004.

[34] William Zeller and Edward W. Felten. Cross-site
request forgeries: Exploitation and prevention.
https://www.eecs.berkeley.edu/~daw/teaching/

cs261-f11/reading/csrf.pdf, 2008.

[35] Yinqian Zhang, Ari Juels, Michael K Reiter, and
Thomas Ristenpart. Cross-vm side channels and their
use to extract private keys. In ACM Conference on
Computer and Communications Security (CCS), pages
305–316. ACM, 2012.

16

http://beefproject.com/
http://devstack.org/
https://www.eucalyptus.com/install
http://www.eucalyptus.com/
http://openqrm-enterprise.com/resources/documentation-howtos/howtos/install-openqrm-51-on-debian-wheezy.html
http://openqrm-enterprise.com/resources/documentation-howtos/howtos/install-openqrm-51-on-debian-wheezy.html
http://openqrm-enterprise.com/resources/documentation-howtos/howtos/install-openqrm-51-on-debian-wheezy.html
http://noscript.net/
http://kanaka.github.io/noVNC/
http://opennebula.org/
http://docs.opennebula.org/4.6/design_and_installation/quick_starts/qs_ubuntu_kvm.html
http://docs.opennebula.org/4.6/design_and_installation/quick_starts/qs_ubuntu_kvm.html
http://www.openqrm-enterprise.com/
http://openstack.org/
https://code.google.com/p/mustache-security/wiki/AngularJS#Sandbox_Bypasses
https://code.google.com/p/mustache-security/wiki/AngularJS#Sandbox_Bypasses
https://code.google.com/p/mustache-security/wiki/AngularJS#AngularJS_1.2.19-1.2.23_/_%3E_1.3.0-beta.14
https://code.google.com/p/mustache-security/wiki/AngularJS#AngularJS_1.2.19-1.2.23_/_%3E_1.3.0-beta.14
https://code.google.com/p/mustache-security/wiki/AngularJS#AngularJS_1.2.19-1.2.23_/_%3E_1.3.0-beta.14
http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
https://www.eecs.berkeley.edu/~daw/teaching/cs261-f11/reading/csrf.pdf
https://www.eecs.berkeley.edu/~daw/teaching/cs261-f11/reading/csrf.pdf

	Introduction
	Related Work
	Formal Model
	Modelling IaaS
	Modelling private clouds
	Attacker Model

	Technical Background
	Private Cloud CMPs
	Attacks on Web Interfaces
	Attacks on Clouds

	Methodology
	Existing Countermeasures
	Accessibility of VMs through the CCI
	Manipulating a VM

	Attacks
	Eucalyptus Sandbox Bypass
	Stored XSS on OpenStack
	OpenNebula: Denial-of-Service on VM
	OpenNebula: Compromise-Level Attack
	Overview of the Attack

	XSS on openQRM

	Responsible Disclosure
	Recommendations
	References

