Sometimes it’s better to be STUCK!
SAML Transportation Unit for Cryptographic
Keys *

Christopher Meyer, Florian Feldmann, and Jorg Schwenk

Horst Gortz Institute for IT-Security, Ruhr-University Bochum
{christopher.meyer, florian.feldmann, joerg.schwenk}@rub.de

Abstract. Over the last decade the Security Assertion Markup Lan-
guage (SAML) framework evolved to a versatile standard for exchanging
security statements about subjects. Most notably, SAML facilitates the
authentication of users, and is thus deployed in both Webservice (SOAP,
WS-Security) and REST-based (SAML SSO webbrowser profile, SAML
Bearer token in OAuth) services. But at least SAML provides no stan-
dardized, overall solution to transport key material.

This paper recommends an extension, STUCK - the SAML Transporta-
tion Unit for Cryptographic Keys, to the SAML framework which pro-
vides an easy way to transport cryptographic key material bound to
assertions issued by particular subjects. The proposal fits into existing
solutions and is fully compliant with the Security Assertion Markup Lan-
guage, XML Digital Signature and XML Encryption standards.

Keywords: SAML, XML, Key Transportation, Key Distribution, SAML Ex-
tension

1 Introduction

SAML In the world of Single Sign-On (SSO), and authentication of users in
general, the Security Assertion Markup Language (SAML) [1] evolved to be a
successful standard. Companies like Google! and Salesforce? rely on its flexibility
and benefits. SAML’s ability to map security statements about subjects to XML
provides an easy and human readable solution for demands concerning authen-
tication and authorization of data exchange. But exchanging subject and issuer
information, as well as assertions about them, is just one possible application of
SAML’s extensive features.

* This work was partially funded by the Sec® project of the German Federal Ministry
of Education and Research (BMBF, FKZ: 01BY1030).

! http://www.google.com

2 http://www.salesforce.com

http://www.google.com
http://www.salesforce.com

AKE Multiple real-world applications depend on an authenticated key exchange
(AKFE), which usually consists of a key agreement protocol combined with a
corresponding authentication protocol. It is necessary to combine identity man-
agement and federation with key exchange capabilites between the participants
in a secure way.

Contribution This paper describes how to perform authenticated key transport
within the SAML framework. More precisely, it provides the following contribu-
tions:

— It is shown how to embed key information into SAML Assertions, in a fully
standard compliant way. Thus key management can easily be integrated in
any SSO/IDM system.

— A proof of concept implementation of the proposed solution is available
within the Sec? project® which aims at adressing the issue of user encrypted
cloud storage by performing en- and decryption exclusively at client side
(and by using hardware enabled key stores). For this to work it is necessary
to exchange key material (the solution will be introduced in detail in section
6).

2 Related work

The idea of combining SAML and key management/distribution capabilities is
not new and has already been subject of several other publications such as the
SAML V2.0 Kerberos Web Browser SSO Profile Versionl.0 [2] specification.
The aforementioned standard aims at a seamless integration of Kerberos into
the browser world in combination with SAML usage. Thus, Kerberos already
provides a complete solution for symmetric key management and distribution.
Due to its great success and wide spread distribution, Kerberos can be seen as
the de facto standard for key distribution in the symmetric world. Technologies
like Microsoft ActiveDirectory* rely on the security of the Kerberos protocol.
Additionally, many vendors such as e.g., Oracle® or SAP® offer Kerberos sup-
port in their products - mostly for authentication purposes. However, the main
drawback of Kerberos - from this paper’s point of view - is that it is limited to
be used with symmetric keys only.

For use with asymmetric keys, there is an existing standard for key man-
agement, the XML Key Management Specification (XKMS 2.0) [3]. The main
focus of XKMS is to define a protocol for distribution and registration of public
keys. The goal is to provide a WebService for the management of public key
material so that other WebServices can obtain public keys for encryption and

3 http://www.sec2.org

4 http://www.microsoft.com/en-us/server-cloud/windows-server/
active-directory.aspx

® http://www.oracle.com

S http://www.sap.com

http://www.sec2.org
 http://www.microsoft.com/en-us/server-cloud/windows-server/active-directory.aspx
 http://www.microsoft.com/en-us/server-cloud/windows-server/active-directory.aspx
http://www.oracle.com
http://www.sap.com

verification of digital signatures. This WebService protocol can be compared to
the well known public key server functionality introduced by PGP [4]. Since this
standard is solely based on asymmetric public keys it is also not applicable for
this proposal, as this paper aims for a technology independent solution regarding
both, symmetric and asymmetric key material.

Binding keys to identities is not only a major goal of this proposal, but
also the X.509 standard [5] and PGP [4] address this topic. Keys should be
undoubtedly connected to the corresponding entities. But one has to keep in
mind that these bindings are static and non flexible. In contrast to this kind
of key binding, STUCK is flexible since it binds keys to Assertions (which are
themselves bound to static identities, but the keys are only implicitly bound
to these identities via the Assertion). As Assertions are in general only short-
lived, this can be turned into an advantage. Binding keys to Assertions and not
directly to certificates offers much more flexibility and introduces a new kind of
abstraction layer.

Another standard to mention is WS-Trust [6]. Though similar ideas of this
paper could also be realized by using the WS-Trust specification, this proposal
is based on SAML due to its wider usage and acceptance at major companies.

3 Motivation

With emerging new capabilities of servers and clients transporting keys or key
material over the internet, in a secure and reliable way, will become more and
more important in the following years. For example, the proposal of the web
crypto API7 or the suggestions made by the Web Cryptography Working Group®
will provide clients and servers with cryptographic capabilities. In these scenarios
it is often mandatory to securely exchange keys between multiple parties. There-
for standardized means for secure key transportation are necessary. Regarding
this SAML recommends itself, due to its flexibility and wide-spread deployment.

3.1 Advantages of the proposal

This proposal offers the option to bind key material to an Assertion. Key
transportation, whether encrypted or unencrypted (as in case of asymmetric
public keys), can now easily be done in the same communication process and
same protocol as SAML. An additional step for key management or distribution
can be ommitted.

Further on, a clean standardized way may ease and facillitate identity fed-
eration beyond company borders. Not only identities could be shared, but key
material, too. It could even be possible to offer key establishment facilities as an
additional benefit on an identity provider’s side.

The practical need for key transportation, management and distribution can
be seen in the previous work that has been done, as for example the already

" http://html5.creation.net/webcrypto-api/
8 http://www.w3.org/2012/webcrypto/

http://html5.creation.net/webcrypto-api/
http://www.w3.org/2012/webcrypto/

mentioned SAML V2.0 Kerberos Web Browser SSO Profile [2]. But proposing a
standard for only a single usage scenario is not sufficient, since it does not care
about the needs of solutions not relying on this specific scenario (in this case
Kerberos). What is really needed is a very flexible approach decoupled from
SAML profiles and existing key establishment and distribution systems. The
proposed solution in this paper is open for every possible usage scenario.

Binding keys to SAML Assertions as explained in the prior sections elim-
inates the necessity for additional transport media encryption since the confi-
dential parts of the key structure can be protected at application level - either
by securing the key material itself using EncryptedKey elements, or obfuscating
the whole KeyInfo structure by using EncryptedAttribute.

Also, one has to be aware that transport encryption is not equal to identity
binding since the transferred data is neither bound to an identity, nor protected
after the transport has been performed. Identities and keys obtained before or
after transportation (e.g., through malware or careless data processing) can be
used independent of corresponding identities. Channel binding approaches may
solve this issue, but add an additional server side requirement: Servers need to
support both, standard conformity concerning XML processing and means like
SSL/TLS for transport layer encryption. It should be noted that XML Encryp-
tion and XML Signature are partly necessary for SAML to work properly, thus
it remains a valid assumption that those two standards are already available at
server side.

4 Technological Foundations

The following section will introduce the major technologies utilized by the pro-
posal. Readers familiar with XML, XML Signature, XML Encryption, SAML
and key management capabilities of these standards may skip this section.

XML The eXtensible Markup Language (XML) [7] represents a human readable
and machine processable language for data structuring. Data can be organized
in a tree-based manner and tagged with attributes. As a major benefit, XML
offers the option to be automatically validated against XML Schema Definition
(XSD) files to guarantee conformance with particular data structuring rules.
Both XML and optional XSD files are highly flexible and adjustable to fit nearly
every scenario regarding data structuring.

XML Signature For applying the concept of digital signatures to XML docu-
ments the XML-Signature Syntax and Processing Standard (XML Signature) [3]
was created. By using XML Signature it is possible to sign parts of XML docu-
ments or even the whole document.

An XML Signature is introduced by adding a <ds:Signature> element into
an XML document. In most cases this element consists of three main subele-
ments: The <ds:SignedInfo> element specifies the necessary setup for signa-
ture creation and verification such as an optional canonicalization - a document

restructuring option -, the signature algorithm and the references - the signed
document parts which can be referenced e.g., via ID or XPath. Within the ref-
erences also the digest method and possibly transformation methods as well as
the digest value can be specified. The <ds:SignatureValue> element contains
the actual signature associated with the referenced document parts. Information
about the public key, which can be used to validate the signature, can be stored
in the <ds:KeyInfo> element.

XML Encryption With the capabilities provided by the XML Encryption Syn-
tax and Processing Standard (XML Encryption) [9] the security goal of confi-
dentiality can be achieved. XML Encryption includes the features of popular
encryption solutions such as DES [10] or AES [11] into the XML world. Parts of
XML documents can be encrypted and decrypted by using XML Encryption.

The <enc:EncryptedData> element introduces an encrypted part or subpart
of the XML document. Obviously, this element is not added to the XML struc-
ture as a signature would be, but it replaces the encrypted cleartext. The three
main components of an encrypted data block are the <enc:EncryptionMethod>,
which specifies the cipher algorithm used for encryption and decryption, the
<ds:KeyInfo> and the <enc:CipherData>. The latter contains the encrypted
data itself, while <ds:KeyInfo> holds information about the key which has to
be used for decryption of the ciphertext, this may also be an encrypted key.

Mostly, hybrid encryption [12] schemes are used i.e., the symmetric key is
encrypted with the recipients public key. This aims at combining the speed
advantages of symmetric encryption schemes with the absence of shared secrets
offered by asymmetric schemes.

SAML The Security Assertion Markup Language (SAML) standard is based on
XML and defines a framework for delivery of issuer and security statements.
Authentication and authorization statements can be modeled around subjects.
Therefore the standard defines a <saml:Assertion> element which can nest se-
curity statements and additional information. Moreover SAML can be bound
to underlying transport media and ships with some predefined usage protocols
for example a protocol implementing the popular Single Sign On use case. The
SAML pre-defined protocols offer XSD files exactly defining the message struc-
ture. Message integrity and validness are achieved by using optional digital signa-
tures via the XML Signature standard, whereas confidentiality can be achieved
by using optional encryption, according to the XML Encryption standard.

5 Get STUCK - the SAML Transportation Unit for
Cryptographic Keys

After having listed and explained the existing structures and technologies in
the previous section, the following sections explain how these structures can be
utilized to enable secure key transportation in a fully SAML 2.0 compatible way.

5.1 Goals of the contribution

The main focus while designing the STUCK solution was to provide a standard-
ized way how to transport keys securely without breaking existing technologies.
Therefore the proposal has to come with terms of XML and especially SAML
compatibility, as well as major security goals when exchanging confidential key
material.

SAML 2.0 compatibility The extension proposal focuses on a solution with-
out modifications to the existing XML Schema definitions of SAML. The solu-
tion must not break existing implementations and has to be fully compatible to
the SAML 2.0 specification (Assertions and Protocols for the OASIS Security
Assertion Markup Language (SAML) V2.0 [1]).

The SAML Standard provides flexible extension points within the Assertion
element. As mentioned in chapter 4, these Assertions are one of the core features
of SAML and used for security statements about subjects. An Assertion can
be digitally signed so that integrity protection can be guaranteed. The proposed
extension puts the key information inside this element to utilize this integrity
protection. Together with the subject information and a digital signature over
the element the key information is inextricably bound to an entity identified by
the information of the Subject element.

Due to the fact that a common extension point is used, the additional
key information neither breaks the SAML Schema (XSD files), nor influences
Assertion or signature processing. Existing implementations do not need to be
adjusted. The application logic behind has simply to deal with additional key
information inside of an Assertion.

Security goals The proposed solution addresses multiple design goals valuable
when dealing with key transportation mechanisms.

— Confidentiality - provided by utilizing XML Encryption on the key mate-
rial (EncryptedKey elements are used)

— Integrity - provided by utilizing XML Signature on the transfered Assertion

— Authentication - provided by utilizing XML Signature on the transfered
Assertion which contains Subject and Issuer elements (the information
should be equal to the one of the Issuer’s certificates)

5.2 Identification of extension point

In order to combine a SAML Assertion with cryptographic key information,
the necessary extension point has to be identified.

Within an Assertion there can be any amount of AttributeStatement
elements with an unbounded number of Attribute elements as child nodes. An
Attribute element requires the presence of an XML attribute of type Name
identifying the content and a sequence of zero to unbounded AttributeValue

elements. An AttributeValue can hold content of type anyType, which weakens
the strict schema definition and allows any well-formed XML data at this place.
This is the extension point used by STUCK to integrate key information into
an Assertion.

For clarity reasons, figure 1 provides a schematic illustration of a SAML
Assertion containing key information.

Conditions

Advice

Statement *
AuthnStatement *
AuthzDecisionStatement *

AttributeStatement *
Attribute * EncryptedAttribute *
AttributeValue * EncryptedData
PLACE KEY DATA HERE

EncryptedKey *

Mandatory ‘Choice Unbounded (multiple) Occurrence *

Optional DN CE=EED
Fig. 1. Schematic illustration of a SAML Assertion with highlighted extension point

5.3 XML key data structure

Additional to the identified extension point for including key data into a SAML
Assertion, a suitable XML structure for holding cryptographic keys is required.
For this purpose, XML Signature already offers versatile structures for keys and
certificates. Supplemented by XML Encryption and its capabilities to define
encrypted keys, all necessary structures for key distribution, management and
transport are present yet. No additional structures have to be defined.

In the following the existing structures are briefly discussed. We mainly focus
on a single element of the XML Signature Standard, the ds:KeyInfo element.

ds:KeyInfo The ds:KeyInfo element, taken from the XML Signature Standard
(here denoted as namespace ds), can be used to carry data somehow relevant for
cryptographic keys. This includes several predefined data structures for storing
information regarding e.g., key data for RSA, DSA, PGP or SPKI, as well as key
related meta data like e.g., X.509 certificate data, key names, retrieval methods
for externally located keys or general management information.

The following child elements from ds:KeyInfo are important for the STUCK
proposal:

— ds:KeyName
This element may contain a key identifer string which identifies key material.
— ds:KeyValue
Originally defined to contain public keys used for signature verification, this
element may also contain symmetric key material or any data structure
defined in a namespace differnet from ds. The following child nodes are
allowed in the schema:

e ds:DSAKeyValue
Defines how to store DSA [13] public keys.

e ds:RSAKeyValue
Defines how to store RSA [14] public keys.

e any ##other
The ds:KeyValue element offers the option to include additional ele-
ments from arbitrary namespaces (other than the one refered to by ds).
This allows to extend this element by including an enc:EncryptedKey
element from the XML Encryption Standard (see below).

enc:EncryptedKey This approach aims for a flexible solution able to carry all
kinds of keys or key material, but the number of predefined key data structures
in the ds:KeyInfo element is limited. This can be remedied by utilizing the
extension point found in ds:KeyInfo: The element can easily be extended to
allow key data usually unsuitable for these predefined data structures by adding
elements from a differing namespace which provide a data structure for the
desired keys. In this approach, an element from the XML Encryption Standard
(here denoted by namespace enc), enc:EncryptedKey, is used.

This element offers support for transportation and storage of encrypted key
material. Since it is obviously not advantageous to transport critical keys (such as
private or secret keys) in an unencrypted manner, this element remains essential
for a complete key distribution solution (such as Kerberos [15]).

5.4 Putting the pieces together - Extended SAML Assertion

After having identified the required XML structures and their respective ex-
tension points, the STUCK approach combines these into a single solution for
secure key transportation in the SAML context.

The first step in the STUCK approach is to insert the key or key material
which is to be transported into a ds:KeyInfo element. For this purpose, the
previously identified extension point within ds:KeyInfo can be used to include
an enc:EncryptedKey element which can hold any type of key or key material.

Note also that in case where a key of a predefined type for ds:KeyInfo should
be transported (e.g., DSA or RSA keys as stated above), enc:EncryptedKey can
be used instead of the predefined structures to utilize its inherent encryption
features. Thus, the confidentiality of the key material itself is provided by XML
Encryption.

The next step in the STUCK approach is to insert the ds:KeyInfo element
including the enc:EncryptedKey element into a SAML Assertion. This is done
by utilizing the previously defined extension point within a SAML Assertion,
i.e., the ds:KeyInfo structure holding the key or key material is inserted into
an AttributeValue element within the Assertion.

Thus, the associated key material is explicitly secured by the same means
that protect the Assertion itself. This means integrity and authenticity of the
key or key material within this extension point are implictly protected by the
(optional) digital signature that protects the Assertion.

If further confidentiality beyond the content of an Attribute is necessary (as
for example to obfuscate the structures behind an Attribute, so that not only
the key material itself will be confidential, but also the accompanying additional
information like e.g., key name, management data etc.) the whole ds:KeyInfo el-
ement can be secured by applying encryption using the enc:EncryptedData ele-
ment from the XML Encryption Standard before embedding it into the Assertion.

As an alternative, the application of EncryptedAttribute as child of Attribute-
Statement can be used instead of Attribute. This approach, however, does not
have any benefits over the usage of XML Encryption to secure the ds:KeyInfo
structure and is not considered any further in this paper.

An example SAML Assertion including key information according to our
contribution is depicted in figure 7 in the appendix. The Assertion is extended
with an AttributeStatement which holds an Attribute with Name="desired
Key". This Attribute contains an encrypted key as AttributeValue. The whole
content (including the key element) is protected by a Signature refering to
URI="#referToMe" which targets the Assertion itself. In addition the Cipher
Data element following the KeyInfo element may contain data encrypted with
the transferred key (e.g., key confirmation/information data etc.)

5.5 Usage in the SAML Assertion Query and Request Protocol

The modified Assertion can be used with any of the predefined SAML protocols.
Figure 3, gives a simplified example scenario on how a Key Requestor (KR) is
able to obtain key material from a Key Server (KS) using only SAML compliant
messages:

— KR sends a SAML Attribute Query to KS, authenticated with an XML
signature. This request contains a reference to the requested key.

— After validating signature and request at Key Server side, KS may decide to
deliver the requested key, in an encrypted form, to KR via the corresponding
SAML Response, including an Assertion. For this purpose, the encrypted
key is included in a SAML Attribute Statement within this Assertion to
provide maximum compliance with the SAML standard. The requested key
is encrypted with e.g., KR’s public key preserving confidentiality.

The detailed messages (c.f., Figures 5 and 6), as well as a detailed explanation
are listed in the appendix. We will come back to this scenario in more detail in

Assertion |D="referToMe"
(—Issuer
—Signature
—SignedIinfo
CanonicalizationMethod
SignatureMethod
Reference URI="#referToMe"
Transforms
DigestMethod
DigestValue
—SignatureValue
—Keylnfo
—Subject
—AttributeStatement
Attribute Name="desiredKey"
AttributeValue
Keylnfo
LEncryptedKey
KeylInfo
KeyName recipientsPrivateKey
EncryptionMethod
CarriedKeyName desiredKey
ipherData
ipherValue

Fig. 2. Proof of concept SAML Assertion

Key Requester Key Server

SAML Attribute Query

- Issuer

- Signature

- Subject

- Attribute: desired key

N

AN

SAML Response
- Assertion

- Issuer

- Signature

- Subject

- AttributeStatement

- Attribute
- AttributeValue: encrypted key

Fig. 3. Example scenario on the usage of the proposal

the Case Study (c.f., section 6) when the solution is embedded to a real world
application.

6 Case study

A reference implementation of STUCK is implemented within a research project
where key transport capabilities in conjunction with SAML are required.

6.1 Sec? research project

The Sec? research project? provides a hardware supported solution for secure
mobile storage on public clouds. Therefore the user is able to define confidential
parts of data which will then be encrypted before they are stored in the cloud. An
underlying middleware handles the en-/decryption process transparently before
the data leaves the device. For reasons of convenience the key management and
distribution should be kept as automated as possible. Part of the solution is a
publicly available trusted key server as depicted in figure 4.

(Mobile Device
Applications
- App-
_Interface
Middleware
[XML Encryption | | [- B
Key Manager microSD Card
Engine J
|-
06 g\“a\
) M Trustworthy Key Server
2% a0
2 o

IP based Network
(Internet)

""Secure
Channg| — & 0
‘\z - '

Untrusted Cloud
Storage Services

Fig. 4. Sec? system architecture.

This key server is used for key distribution to clients. The key distribution
follows the principle of hybrid encryption - the key server wraps (encrypts) a
symmetric secret key with a mobile device’s (client) individual public key. The
asymmetric keypair at the client side is bound to an entity (device owner) and
delivered together with a special microSD Card that has to be installed at the
mobile device. The microSD Card can be considered as a Smart Card that stores
key material in an unextractable way. All cryptographic operations that utilize
the key material have to be performed on the card. The corresponding public

9 http://www.sec2.org

http://www.sec2.org

key is deposited at the key server. The client is able to unwrap (decrypt) the
delivered key because she is in possession of the corresponding private key.

Since the whole communication between client and key server is SAML based
the proposal of this paper is applicable and used for key transportation from the
key server to its clients. Additionally, another major goal is to give up transport
security and render its usage optional. The (wrapped) keys should be bound to
SAML Assertions to provide integrity and authentication at the same time.
And all that has to be in line with the SAML specification(s). So to recap, the
following requirements are given:

— (encrypted) keys have to be delivered from a key server to the client

— all critical parts (such as the encrypted key or authentication information)
have to be authenticated and their integrity must be ensured

— deviations from the SAML standard have to be avoided

The solution within the project combines all requirements and integrates
key transport mechanisms seamlessly into SAML without Schema validations or
specification of extensions. The solution uses the approach introduced in section
5. In the following an example communication procedure is outlined:

1. The middleware fetches data from a public cloud storage and determines
necessary key(s) for decryption - Key X.

2. After a lookup the middleware is informed by the microSD Card that it is
not in possession of Key X.

3. A SAML attribute query including authorization data and identifier of the
desired key is built (c.f., figure 5) and sent to the key server.

4. The key server validates the signature and checks for the corresponding
access rights of the requesting client.

5. If all preconditions are met, the client’s public key together with the key
identifier of the desired key is passed to a Hardware Security Module (HSM)
attached to the key server - The client’s public key was deposited previously
at the key server during client registration. The HSM is not directly accessi-
ble by the client and can only be contacted in case of sufficient access rights
- only the key server can access the HSM.

6. The HSM wraps the key identified by the key identifier with the passed
public key and returns the encrypted key to the key server.

7. The wrapped key is included in a signed SAML response (c.f., figure 6) and
returned to the client.

8. The client verifies the SAML response, validates the digital signature, ex-
tracts the wrapped key and passes it to the microSD Card.

9. The microSD Card unwraps the desired key by utilizing the private key and
stores it unextractable after successful unwrapping.

10. The middleware is now in posession of the necessary key and can proceed as
if the key had been present at the beginning.

For further information you are invited to visit the project homepage and
have a look at the papers and information material. Criticism, tips and feature
requests are very welcome!

7 Conclusion

The proposed solution for identity bound key material and key information of-
fers major enhancements to the Security Assertion Markup Language. Addi-
tional means for key transport can be skipped and instead directly mapped to
the SAML level. A reference implementation is integrated within the Sec? re-
search project and will be soon available as open source. The proposal offers
key management and distribution capabilities without schema violation, thus no
adjustments to existing standards have to be made.

References

1. Cantor, S., Kemp, J., Philpott, R., Maler, E.: Assertions and Protocols for the OA-
SIS Security Assertion Markup Language (SAML) V2.0. Technical report (March
2005)

2. Hardjono, Klingenstein, Howlett, Scavo: SAML V2.0 Kerberos Web Browser SSO
Profile Version 1.0. Technical report (March 2010)

3. Hallam-Baker, P., Mysore, S.H.: XML Key Management Specification (XKMS
2.0). W3C Recommendation, W3C (June 2005)

4. Garfinkel, Simson: PGP: Pretty Good Privacy. O’Reilly Media (November 1994)

5. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280 (Proposed Standard) (May 2008)

6. Lawrence, K., Kaler, C.: WS-trust specification. Technical report (March 2007)

7. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensi-
ble Markup Language (XML) 1.0 (Fifth Edition). World Wide Web Consortium,
Recommendation REC-xml1-20081126 (November 2008)

8. Eastlake, D., Reagle, J., Solo, D.: XML-Signature Syntax and Processing. XML
Signature Working Group. (2002)

9. Imamura, T., Dillaway, B., Simon, E.: XML Encryption Syntax and Processing.
Technical report, W3C XML Encryption Working Group (December 2002)

10. US Department of Commerce: Data Encryption Standard (DES) (December 1993)

11. National Institute for Science, Technology (NIST): Advanced Encryption Standard
(FIPS PUB 197) (November 2001)

12. Wikipedia: Hybrid cryptosystem — Wikipedia, The Free Encyclopedia (2011)
[Online; accessed 12-March-2012].

13. National Institute of Standards and Technology (NIST): NIST FIPS PUB 186 —
Digital Signature Standard (May 1994)

14. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM 21 (1978) 120-126

15. Miller, S.P., Neuman, B.C., Schiller, J.I., Saltzer, J.H.: Kerberos Authentication
and Authorization System. In: In Project Athena Technical Plan. (1988)

8 Appendix
A Using STUCK within protocols

STUCK can easily be integrated into existing SAML protocols. To demonstrate
the usage please have a look at the corresponding messages in figures 5, 6 while

reading.

As mentioned, a requester simply queries for a key by passing the key name
as Attribute name (or as AttributeValue of a predefined Attribute for key
queries <saml:Attribute Name="requestKey"> <saml:AttributeValue>
desiredKey</saml:AttributeValue></saml:Attribute>). The KS will re-
turn the desired key (in an encrypted from) as AttributeValue carried by an
Assertion inside a Response.

<samlp:AttributeQuery ID="myQueryID"

Version="2.0" Issuelnstant="2012-07-11T17:05:40Z"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol">

<saml:Issuer> ... </saml:Issuer>
<ds:Signature> ... </ds:Signature>
<saml:Subject> ... </saml:Subject>

<saml:Attribute Name="requestKey">
<saml:AttributeValue>desiredKey</saml:AttributeValue>
</saml:Attribute>
</samlp:AttributeQuery>

Fig. 5. Proof of concept SAML AttributeQuery

<samlp:Response ID="myResponseID"
Version="2.0" Issuelnstant="2012-07-11T17:10:40Z2"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol">
<saml:Assertion ID="referToMe"
Version="2.0" Issuelnstant="2012-07-11T17:10:40Z"
xmlns:ds="http://.../xmldsig#">

<saml:Issuer> ... </saml:Issuer>
<ds:Signature> ... </ds:Signature>
<saml:Subject> ... </saml:Subject>

<saml:AttributeStatement>
<saml:Attribute Name="desiredKey">
<saml:AttributeValue> ... </saml:AttributeValue>
</saml:Attribute>
</saml:AttributeStatement>
</saml:Assertion>
</samlp:Response>

Fig. 6. Proof of concept SAML Response

<saml:Assertion ID="referToMe"
Version="2.0" Issuelnstant="2012-03-01T12:59:48Z"
xmlns:ds="http://.../xmldsig#" xmlns:enc="http://.../xmlenc#">
<saml:Issuer> ... </saml:Issuer>
<ds:Signature>
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://.../xml-exc-cl4n#" />
<ds:SignatureMethod
Algorithm="http://.../xmldsig#rsa-shal" />
<ds:Reference URI="#referToMe">

<ds:Transforms> ... </ds:Transforms>
<ds:DigestMethod Algorithm="http://.../xmldsig#shal" />
<ds:DigestValue> ... </ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>

<ds:SignatureValue> ... </ds:SignatureValue>
<ds:KeyInfo> ... </ds:KeyInfo>
</ds:Signature>
<saml:Subject> ... </saml:Subject>

<saml:AttributeStatement>
<saml:Attribute Name="desiredKey">
<saml:AttributeValue>
<ds:KeyInfo>
<enc:EncryptedKey>
<ds:KeyInfo>
<ds:KeyName>recipientsPrivateKey</ds:KeyName>
</ds:KeyInfo>
<enc:EncryptionMethod Algorithm=".../xmlenc#rsa-1_5" />
<enc:CarriedKeyName>desiredKey</enc:CarriedKeyName>
<enc:CipherData>
<enc:CipherValue> ... </enc:CipherValue>
</enc:CipherData>
</enc:EncryptedKey>
</ds:KeyInfo>
</saml:AttributeValue>
</saml:Attribute>
</saml:AttributeStatement>
</saml:Assertion>

Fig. 7. Proof of concept SAML Assertion

<complexType name="EncryptedElementType">
<sequence>
<element ref="xenc:EncryptedData"/>
<element ref="xenc:EncryptedKey"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>

<element name="Assertion" type="saml:AssertionType"/>
<complexType name="AssertionType">
<sequence>

<choice minOccurs="0" max0Occurs="unbounded">

<element ref="saml:AttributeStatement"/>
</choice>
</sequence>

</complexType>

<element name="AttributeStatement" type="saml:AttributeStatementType"/>
<complexType name="AttributeStatementType">
<complexContent>
<extension base="saml:StatementAbstractType">
<choice max0Occurs="unbounded">
<element ref="saml:Attribute"/>

</choice>
</extension>
</complexContent>
</complexType>

<element name="Attribute" type="saml:AttributeType"/>
<complexType name="AttributeType">
<sequence>
<element ref="saml:AttributeValue"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attribute name="Name" type="string" use="required"/>

</complexType>

<element name="AttributeValue" type="anyType" nillable="true"/>
<element name="EncryptedAttribute" type="saml:EncryptedElementType"/>

Fig. 8. (Stripped) XSD of a SAML Assertion - Source: OASIS (http://docs.
oasis-open.org/security/saml/v2.0/saml-schema-assertion-2.0.xsd)

 http://docs.oasis-open.org/security/saml/v2.0/saml-schema-assertion-2.0.xsd
 http://docs.oasis-open.org/security/saml/v2.0/saml-schema-assertion-2.0.xsd

	Sometimes it's better to be STUCK! SAML Transportation Unit for Cryptographic Keys

