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Abstract. We describe several attacks against the PKCS#1 v1.5 key transport mechanism of XML
Encryption. Our attacks allow to recover the secret key used to encrypt transmitted payload data
within a few minutes or several hours, depending on the considered scenario.

The attacks exploit differences in error messages and in the timing behavior of XML frameworks. We
show how to attack seemingly invulnerable implementations, by exploiting additional properties of the
XML Encryption standard that lead to new side-channels. An interesting novelty of one of our attacks
is that it combines a weakness of a public-key scheme (transporting an ephemeral session key) with a
different weakness of a symmetric encryption scheme (which transports the payload data, encrypted
with the session key).

Recently the XML Encryption standard was updated, in response to an attack presented at CCS 2011.
The attacks described in this paper work even against the updated version of XML Encryption. Our
work shows once more that legacy cryptosystems have to be used with extreme care, and should be
avoided wherever possible, since they may lead to practical attacks.
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1 Introduction

In 1998 Bleichenbacher [3] published a chosen-ciphertext attack on the RSA-based PKCS#1 v1.5 encryption
scheme specified in RFC 2313 [15]. This attack exploits the availability of an “oracle” that allows to test
whether a given ciphertext is PKCS#1 v1.5 conformant. Due to its high relevance, Bleichenbacher’s algo-
rithm was well noticed. For instance, it enabled practical attacks on popular implementations of the SSL
protocol [17]. These implementations were fixed immediately using a workaround patch, which until today
seems to be sufficient to provide security in the context of SSL/TLS. Nonetheless, Bleichenbacher’s attack
sheds serious doubt on the security of PKCS#1 v1.5, in particular in scenarios where an adversary may issue
chosen-ciphertexts to a server and observe the response.

In spite of these negative results, in 2002, four years after publication of the Bleichenbacher attack,
the W3C consortium published the XML Encryption standard [6], in which PKCS#1 v1.5 encryption is
specified as a mandatory key transport mechanism. This standard is implemented in XML frameworks
of major commercial and open-source organizations like Apache, redhat, IBM, Microsoft, and SAP and
employed world-wide in a large number of major web-based and cloud-based applications, ranging from
business communications, e-commerce, and financial services over healthcare applications to governmental
and military infrastructures.
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The decision to use PKCS#1 v1.5 despite the known criticisms on its security may be partly due to the
fact that the ad hoc countermeasures against Bleichenbacher’s attack employed in SSL seem to work well –
at least for protocols of the SSL family. However, one must not ignore that SSL and XML Encryption are
fundamentally different protocols, running in different settings, using a different combination of cryptographic
primitives, and providing different side-channels. Does the use of PKCS#1 v1.5 make XML Encryption
vulnerable to attacks?

Contributions. We describe different attacks on the key transport mechanism of XML Encryption which
is based on PKCS#1 v1.5. Our goal is to turn a given Web Service into a “Bleichenbacher oracle” that allows
us to mount the Bleichenbacher attack [3].

First, we show that it is possible to execute Bleichenbacher’s attack in a straightforward way against
some widely-used Web Services implementations, such as Apache Axis2 [28] or redhat’s JBossWS [11]. This
is noteworthy, given that Bleichenbacher’s attack has received much attention in the computer security
community.

Second, and from a theoretical point of view more interesting, we show that it is possible to conduct
practical attacks even against Web Services implementations that seem not vulnerable (e.g. since they imple-
ment the classical countermeasure against Bleichenbacher’s attack, which we describe below). To this end,
we exploit two properties of the XML Encryption standard:

1. The attacker can choose the ciphertext size. The basic idea is that a larger ciphertext increases the
running time of the decryption process. We will show that this allows the attacker to perform very
powerful timing attacks, which work even in networks where such attacks can usually not be executed
in practice, e.g., in networks with a substantial amount of jitter.

2. A weak mode-of-operation. XML Encryption allows the usage of block ciphers in the cipher-block chaining
(CBC) mode-of-operation. CBC exhibits a weakness [29] that allows an adversary to make modifications
to the encrypted plaintext, by XORing arbitrary bit strings to the plaintext. We show that it is possible
to use this weakness as an alternative way to determine whether a PKCS#1 v1.5 ciphertext is “valid”
or not.
Besides CBC mode, the updated version of the XML Encryption specification allows to use the GCM
mode of operation. This mode was introduced to prevent the attacks from [10]. Interestingly, the CBC-
attack we describe in this paper allows to decrypt GCM ciphertexts, too — if the receiving Web Service
is able to decrypt CBC ciphertexts, which is mandatory for any standard-compliant implementation.
This is due to the fact that we use the PKCS#1 v1.5 weakness in combination with the CBC weakness
only to decrypt the session key. After we have obtained this session key, we can decrypt an arbitrary
ciphertext, regardless of whether it is encrypted using CBC, GCM, or any other mode-of-operation.
A classical countermeasure against Bleichenbacher’s attack is to let the decryption algorithm return a
random key, if decryption fails. Then the system proceeds with this random key. We stress that the
CBC-based attack described in this paper can not be prevented by this countermeasure.

We verify our attacks by experimental analyses. Because of the very detailed error messages of JBossWS,
we found that for certain ciphertexts (an 1/80 fraction of all valid ciphertexts) the straightforward imple-
mentation of Bleichenbacher’s attack takes less than 30 minutes to recover the symmetric key. Apache Axis2
was used to test the timing-based and CBC-based attacks. The timing-based attack takes 200 minutes on
the localhost and less than one week when performed over the Internet. The CBC-based attack takes less
than five days. We compare these two attacks and give two realistic scenarios where each attack performs
especially well. These attacks are applicable to other systems as well, as we describe below. We stress that
all figures are derived using “good” ciphertexts, a property that we describe more precisely in Section 5,
and which holds for (heuristically) one out of 80 ciphertexts (see Section 5.1). We also note that the recent
improvements to Bleichenbacher’s algorithm by Bardou et al. [1] apply in our case as well.

In general chosen-ciphertext attacks can be avoided by ensuring the integrity of the ciphertext. One would
therefore expect our attack can easily be thwarted by using XML Signature [7] to ensure integrity. (Note
that XML Signature specifies not only classical public-key signatures, but also “secret-key signatures”, i.e.,
message authentication codes.) However, this is not true, since chosen-ciphertext attacks on XML Encryption
can be applied even if either public-key or secret-key XML Signatures over the ciphertext are used, see [10,
26] for a detailed description.



Further Applications. In close cooperation with SAP AG, Germany, we furthermore verified that all
attacks worked also against the implementation of XML Encryption in Version 7.03 of the SAP ABAP stack.
SAP is currently in the process of fixing this issue.

Beyond XML Encryption, the recent JSON Web Encryption (JWE) specification [12] prescribes PKCS#1 v1.5
as a mandatory cipher. This specification is under developement and at the time of writing there existed
only one implementation following this specification1. We verified that this implementation was vulnerable to
two versions of the Bleichenbacher’s attack: the direct attack based on error messages and the timing-based
attack.

Related work. At CCS 2011 [10] an attack on XML Encryption was described which allows to extract
the plaintext contained in a given ciphertext. This attack breaks the symmetric encryption scheme of XML
Encryption (AES-CBC or 3DES-CBC) by submitting modified ciphertexts to a Web Service and observing
its response. The attack requires on average 14 · ` chosen-ciphertext queries, where ` is the byte-length of
the recovered plaintext. Even though this is very efficient, the complexity grows linearly with the size of the
plaintext, thus may become infeasible if the attacker has to decrypt long plaintexts. The W3C has responded
to the attack of [10] by updating the XML Encryption standard. Now it recommends the GCM mode instead
of CBC, which prevents chosen-ciphertext attacks against the symmetric cipher.

Let us compare the attack of [10] to our work. For efficiency reasons, a typical XML Encryption ciphertext
consists of two components. The first component is a public key encryption ckey of an ephemeral session key
under the public key of the receiver. The second component is a symmetric encryption cdata of the actual
plaintext data (see Section 3.2 for a detailed description). Jager and Somorovsky’s attack directly decrypts
the cdata component of the ciphertext to obtain the plaintext. In contrast, the attacks presented in this paper
break the public-key encryption part ckey, to recover the ephemeral key first. The ephemeral key can then
be used to decrypt cdata with the symmetric decryption algorithm. This novel approach has two interesting
features. First, it is independent of the symmetric cipher, so it can also be used to attack XML Encryption
ciphertexts that, according to the updated specification, are generated in GCM mode. Second, the attack
complexity is independent of the size of cdata, and thus becomes more efficient than [10] for large cdata.
Finally, it allows to recover the session key instead of only the plaintext, which may in certain scenarios be
more serious.

Bleichenbacher’s attack [3] on PKCS#1 v1.5 [15] has been published at CRYPTO 1998. This attack has
been applied by Klima et al. to popular real-world implementations of the SSL protocol by incorporating an
additional side-channel–a version number check over PKCS#1 plaintext [17]. In [1] Bardou et al. describe
several ways to improve the efficiency of Bleichenbacher’s attack. At Crypto 2001 Manger [18] has presented
an attack on Version 2.0 of PKCS#1 (RSA-OAEP) [16] which is very similar to Bleichenbacher’s attack,
and applicable to the current Version 2.1 [13] as well. Manger’s attack is considered as rather theoretical,
since it requires that a specific side-channel oracle is given. We are not aware of any practical application,
since the required side-channel information is usually not given in practice. Bauer et al. [2] have shown that
PKCS#1 v1.5 is insecure in two non-standard (but realistic) settings, namely broadcast encryption and
IND-CPA security in presence of a plaintext validity checking oracle.

A result with many similarities to our work has been published by Smart [25], who shows how to apply
a Bleichenbacher-style attack to break RSA-based PIN encryption, if a certain side-channel oracle is given.
Thus, like our work, Smart points out the danger of using legacy cryptosystems, and suggests to replace
them with new ones. Very recently, Degabriele et al. [4] gave another Bleichenbacher-style attack that allows
to forge signatures in an EMV transaction. Both these attacks are rather theoretical, since it is unlikely that
the required oracle is given in practice.

In [21] it was noted that valid (symmetric-cipher) padding may lead to a side-channel that allows to mount
Bleichenbacher’s attack, but without additionally exploiting the plaintext-malleability of the symmetric
cipher or giving any concrete application. In contrast, we obtain an oracle which is able to determine wether
a given ciphertext is PKCS#1 v1.5-conformant with probability 1 in at most 256 steps, and show that this
attack is practically relevant.

Generally, we give a truly practical attack which is directly applicable to a vast number of real-world
systems. This shows that using legacy cryptosystems is extremely dangerous, and makes a very strong case
for replacing them.

1 Nimbus-JWT: https://bitbucket.org/nimbusds/nimbus-jwt



Responsible disclosure. In June 2011 we disclosed our attack to the W3C XML Encryption working
group, several developers of well-known Web Services frameworks, and a governmental CERT. All acknowl-
edged the validity of the attack. The W3C XML Encryption working group added a remark to the up-
dated standard [5, Section 6.1.2] which addresses our attack and recommends to use PKCS#1 v2.1 (aka.
RSA-OAEP) instead. However, PKCS#1 v1.5 is still contained in the standard, and mandatory for any
standard-compliant implementation.

We also informed the developers of the JWE implementation and the whole JOSE (JSON Object Sign-
ing and Encryption) working group about the possible threats.2 They acknowledged our attack and are
reconsidering exclusion of PKCS#1 v1.5 from the standard.

2 Bleichenbacher’s Attack

Bleichenbacher’s attack [3] on version 1.5 of the PKCS#1 encryption standard [15] exploits properties of
the encoding of messages. It requires an attacker who has gained access to an encrypted message and who
can send chosen ciphertexts to the intended receiver of the message as shown in Figure 1. Furthermore, it
requires that an “oracle” is given that allows to distinguish between “valid” (PKCS#1 conformant) and
“invalid” (not PKCS#1 conformant) ciphertexts. Such an oracle may in practice be given for instance by a
server responding with appropriate error messages. When referring to PKCS#1 in the sequel, then we mean
version 1.5, unless specified otherwise. We let (N, e) be an RSA [23] public key, with corresponding secret
key d. We denote with ` the byte-length of N , thus, we have 28(`−1) < N < 28`.
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Fig. 1: Attack scenario.

2.1 PKCS#1 v1.5 Padding and Encryption

The basic idea of PKCS#1 v1.5 is to take a message k (a bit string), concatenate this message with a random
padding string PS, and then apply the RSA encryption function m 7→ me mod N .

Let us describe the padding in more detail. In the following, let a||b denote the concatenation of two bit
strings a and b. Suppose a message k of byte-length |k| ≤ `− 11 is given. This string is encrypted as follows.

1. Choose a random padding string PS of length `− 3− |k|, such that PS contains no 00-byte. Note that
the byte length of PS is at least |PS| ≥ 8.

2. Set m := 00||02||PS||00||k. Interpret m as an integer such that 0 < m < N .
3. Compute the ciphertext as c = me mod N .

2 See http://www.mail-archive.com/jose@ietf.org/msg00157



The decryption algorithm computes m′ = cd mod N and interprets integer m′ as a bit string. It tests whether
m′ has the correct format, i.e., m′ = 00||02||PS||00||k. If true, it returns k, otherwise it rejects the ciphertext.

In this paper we say that a ciphertext c ∈ ZN is valid (PKCS#1 conformant), if the m = cd mod N has
the format m = 00||02||PS||00||k. Note that this implies in particular that 2B ≤ (cd mod N) < 3B, where
B = 28(`−2).

2.2 A Ciphertext-Validity Oracle

The only necessary prerequisite to execute Bleichenbacher’s attack is that an oracle O is given which tells
whether a given ciphertext is valid (PKCS#1 conformant) w.r.t. the target public key (N, e). This oracle
takes as input a ciphertext c and responds as follows.

O(c) =

{
1 if c is PKCS#1 conformant w.r.t. (N, e),

0 otherwise.

Such an oracle may be given in many practical scenarios, for instance by a web server responding with
appropriate error messages. We will show how to construct such an oracle based on properties of XML
Encryption.

2.3 Bleichenbacher’s Algorithm

In this section we sketch the idea of Bleichenbacher’s algorithm, which uses the PKCS#1 validity oracle to
invert the RSA encryption function m 7→ me mod N . We give only a high-level description of the attack,
and refer to the original paper [3] for details.

Suppose c = me mod N is given. We assume that c is PKCS#1 conformant. Thus, m = cd mod N lies
in the interval [2B, 3B). Bleichenbacher’s algorithm proceeds as follows. It chooses a small integer s (see [3]
for details on how s is chosen), computes

c′ = (c · se) mod N = (ms)e mod N,

and queries the oracle with c′. If O(c′) = 1, then the algorithm learns that 2B ≤ ms − rN < 3B, for some
r, which is equivalent to

2B + rN

s
≤ m <

3B + rN

s
.

Thus, m must lie in the interval m ∈ [d(2B + rN)/se , b(3B + rN)/sc). By iteratively choosing new s, the
adversary reduces the possible solutions m, until only one is left.

For a 1024-bit modulus and a random ciphertext, the analysis in [3] shows that the attack requires about
one million oracle queries to recover a plaintext, plus a small amount of additional computations. Therefore,
Bleichenbacher’s attack became also known as the “Million Question Attack”. The most time-consuming
step of the algorithm is to find the first value s such that O((c · se) mod N) = 1.

We note that very recently Bardou et al. described improvements to Bleichenbacher’s algorithm by
Bardou et al. [1], which are applicable in our case as well.

3 Web Services

This section summarizes the fundamentals of XML, XML Security, and Web Services, which are relevant to
our paper. The reader familiar with these concepts can safely skip this section.

3.1 XML and Web Services

Web Services is a W3C standard [9] developed to support interoperable interactions over networks between
different software applications. Thereby, the communicating applications use SOAP messages [8]. SOAP
messages are XML-based messages generally consisting of header and body. The header element includes



message-specific data (e.g. timestamp, user information, or security data). The body element contains func-
tion invocation and response data, which are mainly addressed to the business logic processors.

As the XML documents often contain data whose confidentiality and integrity must be protected, the
W3C consortium developed standards describing the XML syntax for applying cryptographic primitives to
XML data. These are specified in the XML Encryption [6] and XML Signature [7] standards.

3.2 XML Encryption

In order to encrypt XML data, in most scenarios hybrid encryption is used, i.e. encryption proceeds in two
steps.

1. The encryptor chooses a session key k. This key is encrypted using a public-key encryption scheme.
2. The actual payload data is then encrypted with a symmetric cipher.

The XML Encryption standard [6] specifies two public-key encryption schemes, namely PKCS#1 in Versions
1.5 and 2.0. Both are mandatory. Furthermore, the updated version of the standard allows to choose between
three symmetric ciphers, namely AES-CBC, AES-GCM, and 3DES-CBC.

<Envelope>
 <Header>
  <Security>
   <EncryptedKey Id="EncKeyId">
    <EncryptionMethod Algorithm="...xmlenc#rsa-1_5"/>
    <KeyInfo>...</KeyInfo>
    <CipherData>
     <CipherValue>Y2bh...fPw==</CipherValue>
    </CipherData>
    <ReferenceList>
     <DataReference URI="#EncDataId-2"/>
    </ReferenceList>
   </EncryptedKey>
  </Security>
 </Header>
 <Body>
  <EncryptedData Id="EncDataId-2">
   <EncryptionMethod Algorithm="...xmlenc#aes128-cbc"/>
   <CipherData>
    <CipherValue>3bP...Zx0=</CipherValue>
   </CipherData>
  </EncryptedData>
 </Body>
</Envelope>

cdata

ckey

Fig. 2: Example of a SOAP message with encrypted data

Figure 2 gives an example of a SOAP message containing such a hybrid ciphertext. This message consists
of the following parts.

1. The EncryptedKey part (ckey). The CipherValue element (inside the CipherData element) contains the
encrypted session key. ReferenceList contains references to all EncryptedData elements that can be
decrypted with the session key.

2. The EncryptedData part (cdata). The CipherValue element contains the payload data, encrypted using
the key encapsulated in ckey. The symmetric cipher is specified in the EncryptionMethod element.

Since XML is a text data format, all binary data are converted to text data by applying Base64 [14] encoding.

Decryption processing and parsing. A Web Service receiving such an XML document processes it as
follows. It parses the document to locate ckey and cdata. It decrypts ckey to obtain the session key k. Then it
uses k to decrypt cdata to obtain the payload data. Finally, the payload data is parsed as an XML document.



Padding in CBC. XML Encryption prescribes usage of block ciphers, namely AES or 3DES. Therefore
the payload data being encrypted needs to be padded to achieve a length which is a multiple of the cipher’s
block-size bs of the applied block cipher. XML Encryption specifies the following padding scheme:

1. Compute the smallest integer p > 0 such that |data|+ p is an integer multiple of bs.
2. Append (p− 1) random bytes to data.
3. Append one more byte to data, whose integer value equals p.

Let us give an example. Suppose a block-size of bs = 8 and payload data consisting of |data| = 5 bytes, e.g.

data = 0x0101010101.

Then we have p = 8− 5 = 3. Thus, the padded payload data would be equal to

data = 0x0101010101????03,

where the ?? are arbitrary random bytes.

Cipher Block Chaining. Cipher-block chaining (CBC) [20] is the most popular block cipher mode-of-
operation in practice. The XML Encryption standard allows to choose between CBC and GCM mode, both
are mandatory. For our application it suffices to describe CBC, but we stress again that both attacks that
we present in this paper apply to ciphertexts generated in GCM mode as well.

Suppose a byte string data, whose length is an integer multiple d · bs of the block-size of the block cipher
(Enc,Dec). Let us write data = (data(1), . . . , data(d)) to denote individual chunks of data of size bs. These
chunks are processed as follows.

– An initialization vector iv ∈ {0, 1}8·bs is chosen at random. The first ciphertext block is computed as

x := data(1) ⊕ iv, C(1) := Enc(k, x). (1)

– The subsequent ciphertext blocks C(2), . . . , C(d) are computed as

x := data(i) ⊕ C(i−1), C(i) := Enc(k, x) (2)

for i = 2, . . . , d.
– The resulting ciphertext is C = (iv, C(1), . . . , C(d)).

See Figure 3 for an illustration of this scheme. The decryption procedure inverts this process in the obvious
way.

3.3 Web Services Frameworks

The rising popularity of Web Services in the recent years led to an emergence of many Web Services frame-
works [11, 24, 27, 28]. A very popular example is the widely-used Apache Axis2 framework. We will execute
the bulk of our experimental analyses on Axis2, therefore we describe this framework in more detail.

Remark 1. Though we analyze mainly Apache Axis2, and thus strictly speaking all our experimental results
are only valid for Axis2, we stress that the attacks described below are in principle applicable to other
frameworks as well (as we have verified for SAP, for instance). Moreover, as we describe in Section 5.4
in detail, it turns out that exploiting certain additional framework-specific side-channels may even lead to
dramatically more efficient attacks.

Apache Axis2 is a Java-based open source framework for deploying Web Services servers and clients. The
framework includes several modules implementing various Web Service specifications, such as Apache Ram-
part. This module enables to utilize XML Encryption. When receiving a SOAP message containing encrypted
data, Axis2 locates ckey and cdata in the XML document structure. In order to decrypt ckey, Axis2 performs
the PKCS#1-validity checks described in Section 2.1. In addition, Axis2 tests whether the resulting ses-
sion key k has a length equal to 16, 24, or 32 bytes. If this fails, then the SOAP error message security
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Fig. 3: Illustration of the CBC mode of operation with the XML Encryption padding scheme.

processing failed is returned. Otherwise, key k is used to decrypt cdata, which yields the payload data
data. Finally, data is parsed as an XML message. If this parsing fails, a security processing failed SOAP
error message (i.e., the same error message that is returned if decryption of k fails) is returned. Otherwise,
it is forwarded to the next module in the processing chain or to the business application

Now, assume we are given a ciphertext (ckey, cdata), and we modify the key encapsulation part ckey (this
is necessary to mount Bleichenbacher’s attack). Then we obtain a modified ciphertext (c′key, cdata). If we send
this ciphertext to the Web Service, then we will receive a security processing failed error message, since
either processing of c′key or parsing of the payload data contained in cdata will fail (except for a negligibly
small probability). Thus, we are not able to distinguish whether c′key is a valid or an invalid ciphertext. This
seems to thwart Bleichenbacher’s attack on the first sigh. However, in the next section, we will describe
techniques for exploiting side-channels allowing us to determine the validity of c′key.

4 Attacks

Imagine an attacker who intercepts a message transferred to the Web Service server and whose goal is to
decrypt cdata. In order to gain the session key k needed for data decryption, the attacker can apply the
Bleichenbacher’s attack on ckey. In this section, we describe two ways to obtain a side-channel that allows
to determine whether a given ciphertext is valid (PKCS#1 conformant), even though the server does not
respond with error messages allowing to distinguish valid from invalid ciphertexts. Thus, we turn a seamingly
secure Web Service server into an oracle O responding with 1, if the decrypted k is valid, or 0 otherwise.
Note that the stateless SOAP message exchange allows us to send an arbitrary amount of requests.

4.1 Basic Ideas

Let us first sketch our ideas on a high level. The first idea is to exploit the fact that the server decrypts
and parses the payload data if and only if ckey is valid. Recall that in principle it is not possible to mount
Bleichenbacher’s attack, since we need to modify ckey in a way that decrypting and parsing cdata fails, and
thus we receive the same security processing failed error message in both cases. However, since cdata
decryption is executed if and only if ckey is valid, the time between sending the ciphertext and receiving the
error message depends on the validity of ckey. Therefore, we can create a Bleichenbacher oracle by measuring
this response time. In practice, this does not always form a practically useful side-channel, since timing
measurements in real networks contain jitter introduced by network latency or server workload.



However, here it comes in handy, that the attacker can set cdata to any bit string whose length is an
multiple of the block-size of the block cipher. Thus, by increasing the length of cdata, the attacker can also
increase the timing gap between a valid and an invalid ckey. The challenge is to keep cdata as small as possible
(to keep the attack efficient), but as large as necessary (to get distinguishable timing results).

In certain scenarios, the timing approach may become inefficient, for instance if the server workload is
extremely unbalanced, or the network connection is not reliable. Therefore we describe a second idea, which
exploits a weakness of the CBC mode. Consider a ciphertext encrypting a single (padded) payload data
block data(1). Recall that such a ciphertext consists of an iv and a ciphertext block C(1) := Enc(k, x), where
x := data(1)⊕iv. Thus, by flipping bits in iv, we can implicitly flip bits in the plaintext data(1). In particular,
we can modify the last byte of data(1), which contains the number of padding bytes. The crucial observation
is now, that there exists one modified iv′ such that the last byte of data(1)

′
= x⊕ iv′ equals the block-length

of the block cipher. In this case, (iv′, C(1)) corresponds to an encryption of the empty string, and XML
parsing of the empty string does not fail. We use this property to distinguish a valid from an invalid ckey.

In the following sections, we describe how to use these ideas to construct an oracle O telling whether a
given ckey is valid. This oracle can then be used to mount Bleichenbacher’s attack.

4.2 Timing Attack

In this section, we describe a timing oracle Ot that determines if a given ckey is valid. Our observation is
that the analyzed Web Service only then decrypts cdata if ckey is valid. Furthermore, parsing of the clear
text does not start until cdata was fully decrypted, i.e. filling cdata with random data will yield a parsing
error after the decryption has completed, except for some negligible probability. Another observation is that
a larger cdata leads to measurably longer decryption times as depicted in Figure 4. This combination makes
our attack well suited for timing attacks across noisy networks, because the attacker can increase the timing
differences by changing the size of cdata. Note that the actual content of cdata is irrelevant, only the size is
important for the timing delay. In our experiments we enforced Axis2 to decrypt cdata using AES-CBC. Note
that 3DES-CBC would bring even larger timing differences because the decryption process in 3DES is less
efficient than AES, which would make our attack easier.
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Fig. 4: Timing difference of valid ckey and invalid ckey in relation to the size of cdata, which was decrypted
using AES-CBC

By nature, the timing measurements in an adaptive chosen ciphertext attack need to be evaluated during
the attack because subsequent requests depend on the answer of the timing oracle of the previous request.
We propose a new algorithm which allows this. The algorithm exploits the facts that valid keys have a
longer processing time than invalid keys and that any noise in the form of random delays that occur in
networks and busy systems is strictly additive. Intuitively, the algorithm determines the minimum response
time tmin for valid keys. Any measured response time t < tmin must be from an invalid key. We call a key
a candidate for a valid key if the associated response time is above tmin . To make sure that this candidate
is not actually an invalid key with the random noise pushing it above the timing boundary, we repeat the



timing measurement with this key i times, resulting in a set of measurements Tckey
= 〈t1, t2, . . . , ti〉. If any

of the repeated measurements is below the boundary, the key is marked as invalid. Note that the attacker
can freely choose the size of the timing differences of valid and invalid keys by adjusting the size l of cdata.
Equation 3 formally defines the timing oracle.

Ot(ckey, l) =

{
1 if min(Tckey

) ≥ tmin,
0 if ∃t ∈ Tckey

: t < tmin,
(3)

The algorithm is split into two phases: First, there is a calibration phase, where the particular timing
conditions of the system are determined. The result of this phase is tmin, which is fed to the timing oracle
in the second phase.

Calibration Phase The oracle can determine if a given ckey is valid by measuring the response time of
a request that uses this particular key. Thus, the oracle must be calibrated so that it can distinguish the
response time of a valid ckey from an invalid ckey. For this, we perform i requests with a valid ckey and
record the set of timings Tvalid = 〈t1, t2, . . . , ti〉. Note that the attacker already has one valid ckey from the
message he listened in to. Let tmin = min(Tvalid)− ε where ε accounts for the fact that min(Tvalid) is only
an approximation for the actual minimum response time t′min of valid keys, because t′min ≤ tmin.

We assume at this stage that the response times for valid and invalid keys remain stable during the attack
phase, i.e. tmin remains the lower boundary for response times with valid keys for the duration of the attack.
If this assumption does not apply for a given system, the attacker can regularly repeat the calibration phase
to address fluctuations of tmin.

Attack Phase Now that Ot is calibrated, the attacker can apply the Bleichenbacher algorithm as described
in Section 2.3. Figure 5 describes the procedure of Ot. The Bleichenbacher algorithm calls Ot and passes ckey
as a parameter. The oracle copies ckey in a SOAP message, sends it to the server and measures the response
time t. The oracle answers with 0 if t < tmin. It repeats the measurement n times if t ≥ tmin to confirm that
ckey is indeed valid3. The oracle answers with 1 if all measurements resulted in greater response times than
tmin.

def is_valid(c_key, n):

do n times:

start = now()

request(c_key, l)

end = now()

t = end - start

if t < t_min:

return 0 // "invalid"

return 1 // "valid"

Fig. 5: Pseudo code sketching the validation routine of candidates of valid keys

4.3 Exploiting a Weakness of CBC

In this section we describe another attack on ckey, which is based on the properties of the CBC mode of
operation. As described in the previous sections, Axis2 processes XML Encryption as follows. It first decrypts
ckey. Afterwards, it uses the decrypted session key k to decrypt cdata. If an error during the decryption occurs,
Axis2 returns an error message that reads security processing failed. There are several possible causes
for this error:
3 We used n = 100 in our measurements.



– ckey decryption: the decrypted ckey was invalid

– cdata decryption: the decrypted data from ckey was valid, but the cdata decryption or padding processing
failed.

– data parsing: cdata was correctly decrypted and padded, but it contained non-printable characters (e.g.
NULL or vertical tab) or a badly placed special character (< or &).

So from this error message, the attacker only then knows that ckey is valid if all steps including parsing
completed successfully. Therefore, the attacker must find a way to construct well-formed data that will be
parsed successfully. To construct well-formed data, we create cdata consisting of two randomly generated 16
bytes long blocks cdata = (iv , C(1)). Then we submit the ciphertext (ckey, cdata) to the Web Service, claiming
that cdata is generated in CBC mode. The latter is possible by simply adjusting the metadata of an XML
document containing encrypted parts. The decryption module first decrypts the C(1) block resulting in:
x = Deck(C(1)). The result of decryption x is afterwards XORed with the initialization vector iv , so that
the plaintext block becomes data(1) = iv ⊕ x. The last byte of data(1) is taken as a padding byte and the
padding is applied. Again, if the padding byte is not valid or the unpadded bytes result in non-printable
characters, an error is returned.

To overcome this problem one can iterate over all the byte values in the last byte of the initialization
vector iv and construct 256 different iv’ values. As flipping a bit in iv implicitly changes the corresponding
bit in the data(1) block, one can iteratively modify the value of the last byte in data(1)

′
. Thereby exactly one

pair (iv ′, C(1)) results in a valid padding byte 0x10, which pads the whole plaintext block. As this special
plaintext is empty (0 bytes in length), parsing always succeeds. In this case, the message is passed to the next
module in the Axis2 processing chain. Note that errors in other modules result in different error messages.

We can use these observations for constructing an oracle which returns 1 or 0, depending on the validity
of the given ckey. For each tested ckey, the CBC-oracle Ocbc needs to send at most 256 requests with different
iv′ values4. As shown in Equation 4, if Axis2 responds with a security processing failed error for a
given ckey and all possible values of iv , then Ocbc returns that ckey was invalid.

Ocbc(ckey) =

{
1 if ∃iv16 ∈ {0, 1, . . . , 255} : Dec(ckey, iv) = ”no error”
0 if ∀iv16 ∈ {0, 1, . . . , 255} : Dec(ckey, iv) = ”error”

(4)

Why this attack cannot be prevented by the classical countermeasure against Bleichenbacher’s
attack. The classical countermeasure against Bleichenbacher’s attack is to let the decryption algorithm
return a random key k, if ckey is invalid, and then to proceed as if ckey was valid.

A first obvious drawback of this countermeasure is that the system has to proceed with the random key
even if it knows that this key is invalid. This may lead to data inconsistencies at the receiver side.

Even worse, it turns out that this countermeasure cannot prevent our CBC-based attack. Note that if ckey
is valid, then among all 256 initialization vectors chosen by the attacker there must exist at least one iv such
that cdata = (iv , C(1)) returns no error. In particular, if the attacker submits a ciphertext cdata that decrypts
to well-formed XML repeatedly to the Web Service, then it will always respond that the ciphertext is valid.
In contrast, if ckey is invalid, and a random key k0 is chosen by the Web Service for further processing, then
even if the Web Service responds once that the tuple c = (ckey, cdata) is decrypted into well-formed XML for
k0, then the attacker can resubmit the same c to the Web Service. Again, another random key k1 6= k0 will
be chosen for further processing, and it is unlikely that the same c will decrypt to well-formed XML for k0
and k1 simultaneously. By repeating this procedure, the attacker can easily determine whether ckey is valid
with probability close to 1.

4 We want to mention that the parsing error could be omitted if the server would be forced to handle the decrypted
bytes as binary data. This would be possible by forcing the server to process MTOM encrypted binary data [19]. It
would improve our attack by factor of 16 as each plaintext containing a valid padding would be valid, indepedently
of the unpadded content. However, as the encryption application on the binary data is not supported by the
analyzed frameworks, we do not investigate it further.



5 Experimental Analysis

In this section, we describe the results of our practical experiments. The timing-based and padding-based
attacks were carried out using “good” ciphertexts, see Section 5.1 for a description of this property. We did
this to speed up our experiments, which was necessary due to limited computational resources. However, a
heuristical analysis shows that it is very likely that a random ciphertext (e.g., encrypting a cryptographic key
with correct padding) meets this property: for a 1024-bit modulus a fraction of about 1/80 of all ciphertexts
is good in the above sense.

We stress that all timing figures derived from our experiments are valid only for this 1/80 fraction of all
PKCS#1 ciphertext, which is however still a significant number. We also note that Bleichenbacher’s attack
in principle allows to decrypt any ciphertext, but for a 79/80 fraction the running time of the attack will be
longer. However, we stress that it is possible to test whether a given ciphertext is good, by issuing at most
N/(3B)−N/(2B) = N/(6B) ≈ 10, 000 oracle queries.

In order to evaluate our attacks, we deployed a Web Service secured with XML Encryption and generated
a valid SOAP message containing ckey in the SOAP header. This element included a symmetric key for cdata
decryption encrypted with a 1024 bit RSA key. The results of the timing-based and padding-based attacks
shown here were all performed against Axis2. Please note that we also got similar results when testing our
attack against the other mentionend XML Encryption implementations and other RSA key sizes.

5.1 Probability of “good” ciphertexts

The first step of Bleichenbacher’s algorithm searches for an integer s such that m · s mod N is PKCS#1 v1.5
conformant. Note that m · s mod N can only be PKCS#1 conformant, if

i ·N
3B

≤ s ≤ i ·N
2B

for some i ∈ N. Therefore the Bleichenbacher algorithm starts with s = N/3B and increments this value
until a suitable s is found. Clearly, this procedure finds s quickly, if m has the property that there exists an
s such that

1 ·N
3B

≤ s ≤ 1 ·N
2B

and m · s mod N is PKCS#1 conformant. Moreover, in our application we will only be able to learn that a
ciphertext c = (ms)e mod N is PKCS#1-conformant, if ms mod N has the form

ms mod N = 00||02||PS||00||k

where the byte-length of k is equal to 16, 24, or 32. In the sequel, we will say that a ciphertext is a good
ciphertext, if it satisfies these properties.

In order to save computation time, all our experiments were executed with random good ciphertexts. Thus,
all our experimental results are meaningful only if the probability that a honestly generated ciphertext meets
the above property is sufficiently high. This leads us to the question what is the probability that a real-world
ciphertext is good?

We ran some additional experiments in order to determine the probability that a random ciphertext is
good. To this end, the algorithm depicted in Figure 6 was implemented. This algorithm generates a random
1024-bit RSA modulus. Then it generates ` random padded plaintexts, and counts the number of plaintexts
such that there exists a suitable s ∈ [N/3B,N/2B] with m · s mod N being PKCS#1-conformant.

We repeated this algorithm 100 times, i.e., we generated 100 random moduli, and tried ` = 1, 000
padded plaintexts for each modulus, such that in total 100,000 plaintexts where tested. Among these 100,000
plaintexts there were 1,543 padded plaintext that lead to good ciphertexts. Thus, about each 80-th ciphertext
is good.

Note also that in general all ciphertexts are vulnerable, even though the attack execution might take
some more time (i.e., more server requests) to decrypt.



1. Generate a random 1024-bit RSA modulus N . Set c = 0.
2. For i from 1 to ` do:

– Choose a random bit string k
– Pad k according to PKCS#1 v1.5, such that

m = 00||02||PS||00||k

– If there exists s ∈ [N/3B,N/2B] such that
• m · s mod N is PKCS#1-conformant,
• ms mod N = 00||02||PS||00||k,

with |k| ∈ {16, 24, 32},
then set c = c+ 1.

Fig. 6: Experimental analysis of the distribution of “good” ciphertexts.

5.2 Timing-based Attack

In this section, we show the results of the empirical evaluation of Ot proposed in Section 4.2. We used
the RDTSC assembler instruction of recent Intel Pentium processors to measure the timings with below
nanosecond accuracy. In the following, we describe the results of the timing oracle evaluation of two different
attacker models.

Attack on Local Machine In this measurement setup, we run the Axis2 server and the attack script
on the same computer. This is a very practical attack scenario, e.g. in cloud computing and especially in a
Platform as a Service, where it is feasible for an attacker to rent a virtual machine that is co-located on the
same physical hardware [22] as the victim.

The measurement computer had 2 Intel XEON 2.4 GHz processors. Figure 7a shows the response times
measured during the calibration phase with 100KB cdata ciphertext and a ckey encrypted with an 1024 bit
RSA key. The solid line denotes valid requests, the dashed horizontal line marks the learned boundary and
the dotted line indicates invalid requests. When compared to the learned timing boundary tmin, it becomes
clear that most invalid requests are below tmin. Any request above tmin is treated as a candidate for a valid
request and repeated n times for confirmation. The figure suggests that only few invalid requests slipped
above tmin leading to a repetion of the request.

As a result, ckey could be reconstructed successfully in 200 minutes. Overall, the 321,870 oracle queries
resulted in 398,123 queries in our measurement setup, i.e. the oracle needs to perform 1.24 actual Web
Service requests per oracle query. On our hardware, we could perform on average 37 Web Service requests
per second.

Attack through Internet Additionally, we evaluated the effectiveness of the timing oracle for a remote
attacker who attacks the Web Service through the Internet. For this measurement setup, we chose two
Planetlab nodes at universities. The nodes were seven hops apart from each other and the round trip time
was approximately 22 milliseconds.

We calibrated the valid/invalid boundary of the timing oracle as shown in Figure 7b and used 1,000KB
of random data as cdata. In this configuration, the oracle correctly answers approximately 2,000 queries per
hour and needs to perform approximately 2,400 actual Web Service requests to the server. Thus, an attacker
can learn ckey remotely across practical networks in less than one week.

5.3 Padding-based Attack

As the padding-based attack does not depend on the network connection, we tested its functionality on a
localhost so the Web Service client and server did not communicate over the Internet. The used machine
had 2 Intel XEON 2.4 GHz processors.

The whole attack execution lasted less than five days. Thereby, the attacker sent about 322,000 oracle
queries, which resulted in 82,180,000 (≈ 256 ∗ 322, 000) total server requests.
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Fig. 7: Response times with valid and invalid ckey

5.4 Exploiting JBossWS PKCS#1 Processing

All our attacks presented so far are also applicable to the XML Encryption implementation of JBossWS [11].
In addition, we discovered another side-channel in JBossWS 6.0 that allows us to mount Bleichenbacher’s
attack directly, by adopting it slightly to the XML Encryption setting. We do not even need to consider
“good” ciphertexts.

In the sequel, let us assume a 1024-bit modulus is used. Given a ciphertext ckey, JBossWS first decrypts
ckey and obtains a padded plaintext m = (m1, . . . ,m64) consisting of 64 bytes mi, i ∈ {1, . . . , 64}. Then it
performs the following checks:

1. Test whether (m1,m2) = (0x00, 0x02). If true, proceed.
2. Test whether there exists i ∈ {3, . . . , 10} such that mi = 0x00. If false, proceed.
3. Test whether there exists i ∈ {11, . . . , 64} such that mi = 0x00 If true, proceed.

If any of these tests fails, an internal WS-Security error SOAP fault message is generated and returned.
Otherwise, JBossWS tries to proceed. This might also fail, for instance if the decrypted key has incorrect
length or if the parsing of encrypted payload fails. However, in this case a different error message, namely a
Decryption failed SOAP fault, is returned.

This leads to the following side-channel leakage. If the attacker does not receive the internal WS-Security

error SOAP fault, then it learns that the first two bytes (m1,m2) of the plaintext contained in the submitted
ciphertext were equal to (0x00, 0x02). This suffices to mount Bleichenbacher’s attack directly.

We applied the Bleichenbacher attack on JBossWS using a 1024 bit key. We measured the execution time
on a machine with two 2.8 GHz processors. It turns out that it is possible to decrypt a given ciphertext
within less than 30 minutes, by issuing about 250, 000 server request.

5.5 Exploiting Additional Side-Channels in Apache Axis2

As described in Section 3.2, SOAP messages containing encrypted data typically consist out of two parts:
ckey and cdata. In order to reference the cdata part from the ckey part, the DataReference element is used.
Using DataReference, the message interceptor can locate the part dedicated for symmetric decryption.



By modifying the ckey ciphertexts in the original SOAP messages, Axis2 in comparison to JBossWS
always correctly responded with the same error message. Thus, we tried to find additional side-channels to
mount the straight-forward Bleichenbacher attack. By analyzing the Axis2 framework we found out that
removing the DataReference elements from the ckey part reveals a new side-channel: When the decrypted
message was not PKCS#1 conformant, the server responded with an obvious security error (security
processing failed). In case of a PKCS#1 conformant message the server correctly decrypted a session key.
However, as there was no DataReference element, the server security module skipped the cdata decryption
and forwarded the document to further processing modules responding with different error messages. This
way we were able to provoke new error responses leading to a direct application of Bleichenbacher’s attack.

This interesting result shows that also validly looking systems can reveal unexpected side-channels coming
from the communication between different processing layers – in this case: XML layer processing XML
Encryption structure and the underlying crypto layer processing PKCS#1.5. Interfaces communicating with
the underlying libraries should be analyzed deeper in order not to reveal details leading to cryptographic
side-channels.

6 Comparison of the Timing-based and the Padding-based Attack

An attacker can choose between a timing-based and a padding-based oracleO to decipher an XML Encryption
message and he obviously chooses the oracle that requires the least effort to implement. We measure this effort
based on the amount of Web Service requests sent per oracle query and on the amount of data transmitted.
Obviously, the less requests and the less data need to be sent, the more effective the attack becomes.

By computing the amount of data transfered between the Web Service server and the attacker, we have
to consider these parameters:

– datac: A ciphertext consisting of ckey and cdata
– datao: Data overhead coming from the SOAP XML structure and the transport data overhead (e.g.

HTTP headers). In our examples, the overall overhead per request was about 2.3 KB.
– δattack: Attack coefficient, number of Web Service queries per oracle query. For the timing-based oracle,
δattack depends on the network and system performance. By applying the padding-based oracle, we get
δattack = 256 in the worst case scenario5.

The attacker having an access to both oracles first needs to execute the system profiling using the
calibration phase (as described in Section 4.2) to determine the amount of datac needed to send to the oracle
and the oracle coefficient δattack. Afterwards, he computes the amount of data needed to be transfered to
the Web Service server per oracle request:

dataO = (datac + datao) · δattack

Using this equation we can compute the approximate values of transmitted data for our timing-based and
padding-based oracles from the previous section. The values are given in Table 1.

Localhost Network
datac + datao δattack dataO datac + datao δattack dataO

Timing-based O 102.3 KB 1.2 122.76 KB 1,002.3 KB 1.24 1,242.85 KB

Padding-based O 2.51 KB 256 642.56 KB 2.51 KB 256 642.56 KB

Table 1: Comparing timing-based and padding-based oracles regarding the amount of sent requests and
amount of sent traffic for two different attack scenarios.

By analyzing the table it becomes clear that by application of the padding-based oracle datac stays
constantly small. Thus, the attacker would use this oracle in networks with a high jitter. In different networks,

5 Querying the padding-based oracle with an invalid ciphertext results always in 256 Web Service queries. As most
generated ciphertexts in Bleichenbacher’s attack are invalid, δattack ≈ 256.



where datac stays small also for the timing-based attack, the attacker would execute the attack using the
timing-based oracle.
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