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Abstract. We present the first tight security proofs for two general classes of Strong RSA based sig-
nature schemes. Among the affected signature schemes are the Cramer-Shoup, Camenisch-Lysyanskaya,
Zhu, and Fischlin signature scheme. As the representation of elements in prime order bilinear groups is
much smaller than in RSA groups, we also present two bilinear variants of our signature classes that
output short signatures. Similar to before, we are able to show that these variants have tight security
proofs under the the Strong Diffie-Hellman (SDH) assumption. We so obtain very efficient SDH based
variants of the Cramer-Shoup, Fischlin, and Zhu signature scheme and the first tight security proof for
the recent Camenisch-Lysyanskaya scheme that was proposed and proven secure under the SDH assump-
tion. Central to our results is a new proof technique that allows the simulator to avoid guessing which of
the attacker’s signature queries will be re-used in the forgery. In contrast to previous proofs, our security
reduction does not lose a factor of ¢ here.

Keywords: signature scheme, signature class, tight security, SRSA, SDH, standard model

1 Introduction

PROVABLE SECURITY AND TIGHT REDUCTIONS. The central idea of provable security is to design
a cryptographic scheme in such a way that if an attacker A could efficiently break its security prop-
erties then one can also construct an efficient algorithm B, to break a supposedly hard problem. In
this way, we prove the security of the scheme by reduction from the hardness assumption. Now, if 53
has almost the same success probability as A while running in roughly the same time we say that
the security reduction is tight. Otherwise, the security reduction is said to be loose.

MOTIVATION. It is no secret why cryptographers are interested in tight security proofs: besides
being theoretically interesting, they allow for shorter security parameters and better efficiency. This
work was also motivated by the observation that for several of the existing Strong RSA (SRSA)
based signature schemes without random oracles we do not know if tight security proofs exist.
Those schemes which we know to have a tight security proof, also have some limitations concerning
practicability (which in turn cannot be found among the signature schemes with a loose security
reduction). In 2007, Chevallier-Mames and Joye addressed this problem in the following way [6]:
they took a tightly secure signature scheme, the Gennaro-Halevi-Rabin scheme [10], and improved
its efficiency by re-designing one of its most time-consuming functionsE The problem with such an
approach is that it only affects new implementations of the considered signature scheme. Therefore,
we take the same approach as Bernstein at EUROCRYPT ’08 who proved tight security for the
original Rabin-Williams signature scheme in the random-oracle model [2]. However, in contrast to
Bernstein we concentrate on schemes that are secure in the standard model.

CONTRIBUTION. In this work, we ask the following question: are there tight security proofs for the
existing practical signature schemes by Cramer-Shoup [8], Zhu [23], Camenisch-Lysyanskaya [4] and

! Basically, they introduced a new method to map messages to primes which is much more efficient in the verification
process than the original method from [10] by choosing a random prime and making use of a chameleon hash function
to map the input message to that prime.
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Fischlin [9] (which we only know to have loose security reductions)? We answer this question in the
affirmative and present the first tight proofs for the above signature schemes. However, our result
is not limited to the original schemes. In our analysis, we generalize the schemes by Camenisch-
Lysyanskaya, Fischlin and Zhu by introducing a new family of randomization functions, called com-
bining functions. The result of this generalization is an abstract signature scheme termed ’combining
scheme’. In a similar way, we introduce a second general class of signature schemes called ’chameleon
hash scheme’ that can be regarded as a generalization of the Cramer-Shoup signature scheme. Then,
we prove the combining signature scheme and the chameleon hash scheme to be tightly secure under
the SRSA assumption when instantiated with any secure combining function, respectively chameleon
hash functionﬂ Finally, we show that our results do not only hold under the SRSA assumption. We
analyze whether there also exist tight security reductions for analogous schemes based on the SDH
assumption in bilinear groups. Interestingly, most of the above schemes have not been considered
yet under the SDH assumption (except for the Camenisch-Lysyanskaya scheme), although, at the
same security level, the group description is much shorter in bilinear groups than in factoring based
groups. We develop a SDH based variant of the combining signature scheme and the chameleon hash
scheme and prove it to be existentially unforgeable under adaptive chosen message attacks with a
tight security reduction. In doing so, we present the first SDH based variants of the Fischlin, the
Zhu and the Cramer-Shoup signature scheme and the first tight security proof of the SDH based
Camenisch-Lysyanskaya scheme. When instantiated with existing combining functions (respectively
chameleon hash functions), we obtain short and efficient signature schemes. Our results can be in-
terpreted in two positive ways: 1) Existing implementations of the affected signature schemes (with
a fixed parameter size) provide higher security than expected. 2) New implementations can have
shorter security parameters what transfers to higher efficiency. Due to the wide deployment of the
considered signature schemes our results are highly interesting for practice.

TECHNICAL CONTRIBUTION. In the existing proofs, the simulator partitions the set of forgeries by at
first guessing j € {1,...,q} where ¢ is the number of signature queries made by the attacker. Only
if the attacker’s forgery shares some common values with the answer to the j-th signature query
the simulator can break the SRSA assumption. Otherwise the simulator just aborts. The number of
signature queries rises polynomially in the security parameter and the security proof loses a factor
of ¢ here. Our main contribution is a new technique that renders the initial guess unnecessary. As a
consequence, any forgery helps the simulator to break the SRSA assumption. This results in a tight
security proof.

RELATED WORK. Our work is related to the existing hash-and-sign signature schemes without
random oracles that are proven secure under the SRSA or the SDH assumption. We subsequently
give a brief overview on the available results. In 1988, Goldwasser, Micali and Rivest published
the first provably secure, but inefficient signature scheme [11]. More than a decade later, in 1999,
Gennaro, Halevi, and Rabin [10] presented a signature scheme that is secure in the standard model
under the Flexible or Strong RSA assumption (SRSA). This scheme is more efficient, both the key
and the signature size are less than two group elements (a 1024 bits), but as a drawback, it relies on an
impractical function that injectively maps messages to primes [7,17]. Advantageously, the Gennaro-
Halevi-Rabin signature scheme is known to have a tight security proof. At the same time and also
based on the SRSA assumption, Cramer and Shoup [8] proposed an efficient standard model signature

2 Unfortunately the security proof of the SRSA based chameleon hash scheme does not directly transfer to the Cramer-
Shoup signature scheme. This is simply because in the Cramer-Shoup scheme the keys of the chameleon hash function
are not chosen independently. Nevertheless, the proof of the Cramer-Shoup signature scheme is technically very
similar to the proof of the chameleon hash scheme. For completeness, we also provide a full proof of (tight) security
of the Cramer-Shoup signature scheme in Appendix @



scheme, that unlike [10] does not require to map messages to primes. In contrast, primes can be drawn
uniformly at random from the set of primes of a given bitlength. Based on this work, Zhu [22, 23],
Fischlin [9], Camenisch and Lysyanskaya [4], and Hotfheinz and Kiltz [12] in the following years
presented further SRSA based schemes. These schemes are either more efficient than the Cramer-
Shoup scheme or very suitable in protocols for issuing signatures on committed values. In 2004, Boneh
and Boyen presented the first hash-and-sign signature scheme that makes use of bilinear groups [3].
The big advantage of bilinear groups is the very compact representation of group elements. The
Boneh-Boyen signature scheme is proven tightly secure under a new flexible assumption, the ¢-Strong
Diffie Hellman (SDH) assumption. In 2004, Camenisch and Lysyanskaya also presented a signature
scheme that relies on bilinear groups [5]. Unlike the Boneh-Boyen scheme, their scheme is proven
secure under the LRSW [16] assumption. However, in the same paper Camenisch and Lysyanskaya
propose a variant that is based on the SDH assumption in bilinear groups. The corresponding security
proof was provided four years later in [1,18]. Similar to the original Camenisch-Lysyanskaya scheme
the security proof of the SDH scheme is loose.

2 Preliminaries

Before presenting our results we briefly review the necessary formal and mathematical definitions.
For convenience, we also describe two general setup and key generation procedures (settings) in
Section 2.7, and Section When describing our signature schemes in Sections we
will refer to the corresponding setting and only describe the signature generation and verification
algorithms.

2.1 Notation

For a,b € Z, a < b we write [a; b] to denote the set {a,a+1,...,b—1,b}. For a string x, we write |z|2
to denote its bit length. If z € Z, we write |z| to denote the absolute value of z. For a set X, we use | X|

to refer to its size and = <~ X to indicate that z is drawn from X uniformly at random. For n € N, we
use QR,, to denote the set of quadratic residues modulo n, i.e. QR, = {z|Jy € Z* : y*> = 2 mod n}.
If A is an algorithm we write A(z1,x2,...) to denote that A has input parameters xi,zo,... .
Accordingly, y < A(z1,z9,...) means that A outputs y when running with inputs 1, zz,... . We
write PPT (probabilistic polynomial time) for randomized algorithms that run in polynomial time.
We write k € N to indicate the security parameter and 1% to describe the string that consist of &
ones. In the following, we implicitly assume that the size of the generated key material is always
polynomially dependent on the security parameter.

2.2 Signature Scheme

A digital signature scheme S consists of three algorithms. The PPT algorithm KeyGen on input 17
generates a secret and public key pair (SK, PK). The PPT algorithm Sign takes as input a secret
key SK and the message m and outputs a signature ¢. Finally, the deterministic polynomial time
algorithm Verify processes a public key PK, a message m and a signature o to check whether o is a
legitimate signature on m signed by the holder of the secret key corresponding to PK. Accordingly,
the algorithm outputs 1 to indicate a successful verification and 0 otherwise.

2.3 Strong Existential Unforgeability

The standard notion of security for signature schemes is due to Goldwasser, Micali and Rivest [11].
We use a slightly stronger definition called strong existential unforgeability. The signature scheme



S = (KeyGen, Sign, Verify) is strongly existentially unforgeable under an adaptive chosen message
attack if it is infeasible for a forger, who only knows the public key and the global parameters,
to produce, after obtaining polynomially (in the security parameter) many signatures oy,...,0, on
messages mj, ..., mg of its choice from a signing oracle O(SK, ), a new message/signature pair.

Definition 1. We say that S is (q,t,€)-secure, if for all t-time adversaries A that send at most q
queries to the signing oracle O(SK,-) it holds that

Pr [(SK, PK) « KeyGen(1¥), (m*,0*) « A°K)(PK), Verify(PK,m*,o*) = 1] <k,

where the probability is taken over the random coins of KeyGen and A and (m*,o*) is not among
the message/signature pairs obtained using O(SK,-) (i.e. (m*,0*) ¢ {(m1,01),...,(mg,04)}).

2.4 Collision-Resistant Hashing

Definition 2 (Collision-resistant hash function). Let Hy, for k € N be a collection of functions
of the form h: {0,1}* — {0,1}*. Let H = {Hy.}ren- H is called (ty, €p)-collision-resistant if for all
ty-time adversaries A it holds that

Pr [h & Hi, (m,m') «— A(h), m#m', m,m' € {0,1}*, h(m) = h(m')| < €n = en(K),

where the probability is over the random bits of A.

2.5 Chameleon Hash Function

A useful tool in many of the signature schemes without random oracles is a chameleon hash func-
tion [15]. A chameleon hash function CH = (CHGen, CHEval, CHColl) consists of three algorithms.
The PPT algorithm CHGen takes as input the security parameter x and outputs a secret key SKey
and a public key PK¢y. Given PKey, a random r from a randomization space R and a message m
from a message space M, the algorithm CHEval outputs a chameleon hash value ¢ in the hash space
C. Analogously, CHColl deterministically outputs, on input SK¢y and (r,m,m’) € R x M x M,
r" € R such that CHEval(PKc¢y, m,r) = CHEval(PKcpy, m/,1’").

Definition 3 (Collision-resistant chameleon hash function). We say that CH is (ecr, ten)-
collision-resistant if for all tep-time adversaries A that are only given PKey it holds that

. (SKeyw, PKey) < CHGen(1%), (m,m/,r,r") «— A(PKcy), r,7" € R, <.
m,m’ € M, m' #m, CHEval(PK¢y,r,m) = CHEval(PKew,r',m/) | = M

where the probability is over the random choices of PKey and the coin tosses of A.

We also require that for an arbitrary but fixed public key PK¢py output by CHGen, all messages
m € M generate equally distributed hash values when drawing r € R uniformly at random and
outputting CHEval(PK¢y,r,m). If the keys are obvious from the context, we write ch(r,m) for
CHEval(PKcy,m,m) and ch~t(r,m,m’) for CHColl(S K¢y, 7, m, m’).

The security of chameleon hash functions can be based on very standard assumptions like the
discrete logarithm assumption [15] or the factoring assumption [15,20]. Since the factoring assumption
is weaker than the SRSA assumption and the discrete logarithm assumption is weaker than the SDH
assumption we can use chameleon hash functions as a building block for SRSA and SDH based
signature schemes without relying on additional complexity assumptions.



2.6 Combining Function

In this section, we introduce a new family of functions called combining functions. We will subse-
quently use the concept of combining functions to generalize several existing signature schemes.

Definition 4 (Combining Functions). Let Vy for k € N be a collection of functions of the form
Z2:RXM — Z with |Z| <2F. Let V = {Vi}ren. We say that V is (tcomp, €combs Ocomp)-combining if
for all attackers A there exist negligible functions €.omp(k) and dcomp(k) and the following properties

hold for z <& V.

1. for allm € M it holds that |R| = | Z,,| where Z,, is defined as Z,, = z(R,m). For allm € M
and all t € Z there exists an efficient algorithm z=1(t,m) that, if t € Z,,, outputs the unique
value r € R such that z(r,m) =t, and L otherwise.

2. fort & 2 and ' & R we have for the mazimal (over all m € M) statistical distance between r’
and z=(t,m) that

max {1/2 . Z }Pr[r' =7] — Pr[z7Y(t,m) = TH} < Scomb-

eM
mn reR

3. for all r € R, it holds for all teomp-time attackers A that

(m,m’) — A(z,r), m,m' € M,
<
br [ m#m', z(r,m) = z(r,m’) = Ecomb
where the probability is taken over the random bits of A.

In the following, we assume that when used in signature schemes, z & V), is chosen uniformly at
random during the key generation phase.

Table 1. Examples of statistically secure combining functions. Let V = {Vi }reny with Vi, = {z(r,m)},
Il €N, I > 1, and p be prime.

z(r,m) R M 2 combining
EX1jr+mmodp| Z, Ly Ly, (+,0,0)
EX2[ rom {o,1}' | {o,1} {0,1} (-,0,0)
EX3| r+m [[0;2 — 1]|[0; 2" — 1][[0; 2" + 2!m — 2]|(-, 0, 2lm )

In Table |1} we present three concrete examples (EX1, EX2, EX3) of statistically secure combining
functions. The following lemma shows that these examples are valid combining functions with respect
to Definition [l

Lemma 1. EX1 and EX2 constitute (-,0,0)-combining functions and EX3 constitutes a (-, 0, 2lm~Ir)-
combining function.

Proof. Let us first analyze EX1 and EX2. We have that M = R = Z = Z,, for all m € M and
we can efficiently compute r as r =t —mmod p or r = t @& m for all given t € Z and m € M.
Furthermore, since z is bijective in both input parameters z~!(¢,m) is uniformly distributed in R
for all m € M and random t € Z. Thus, dcomp = 0. Finally, since z is a bijection in the second input
parameter, it is collision-free (property 3) in both examples and we have that €.omp = 0. Now, let



us analyze EX3. For given m € M and t € Z, z~1(t,m) outputs r =t —m if t —m € R and L
otherwise. To show that z is collision-free, observe that m # m' implies r +m # r+m/ for all r € R.
To analyze D = maxpenm {1/2- >, |Prlr’ = r] = Pr[z"1(t,m) = r]|} first note that for ¢ & Zm,
z~1(#',m) is uniform in R since |Z,,| = |R| implies that z=!(-,m) defines a bijection from Z,, to R.
For ¢/ <& Zm and t S 2z we get

D= max {1/2 D [Prlr =] = Pl (8 ) = rH}

eM
m reER

= max {1/2 D Pr[e Nt m) =] = Prlz7 (t,m) = TH}

meM
reR

< max < 1/2- Z |Pr[t/:t0}_Pr[t:t0H

meM toeZom
R S W R
2 zal 121 21z
o 2m—2
—2(2m 4 2r — 2)
< lm=lr

Three further examples of combining functions can be obtained when first applying a (¢, €p,)-
collision-resistant hash function that maps (long) messages to M. Lemma [2| guarantees that the
results are still combining according to Definition |4l The proof of Lemma |2 is straight-forward and
can be found in the full version.

Lemma 2. Let V be a (tcombs €comby Ocomb)-combining function and H be a (tn, €p)-collision-resistant
hash function. Then it holds that V' = {V,}ren with V; = {z(r,h(m))|z & Vi, h & Hyi} is
(min{tcomb7 th}) €comb T €h, 6comb)'combining'

The proof of Lemma [2]is straight-forward and can be found in Appendix

2.7 The Strong RSA Setting

Definition 5 (Strong RSA assumption (SRSA)). Given an RSA modulus n = pq, where p, q are

sufficiently large primes, and an element u € Z}, we say that the (tsrsa, €srsa)-SRSA assumption
holds if for all tspsa-time adversaries A

Pr((z,y) «— A(n,u), x € Z;,, y > 1, ¥ = umod n| < espsa,
where the probability is over the random choices of u,n and the random coins of A.

Definition 6 (SRSA setting). In this setting, KeyGen(1%) outputs (SK = (p,q), PK = n) for a
safe modulus n = pq such that p=2p' +1, ¢ =2¢' + 1, and p,q,p’,q are primes. All computations
are performed in the cyclic group QR,,. Let l; = l;(k) fori € {n,t,c,e,m} be polynomials. We require
that |nly = 1, and [p'|2 = |¢'|2 = 1n/2 — 1. Furthermore, we assume that the (tsrsa, €srsa)-SRSA
assumption holds. We let u,v,w be public random generators of QR,, with unknown log, v, log, w,
and log, w. When using combining functions z(r,m), we assume that M C [0;2lm —1], Z C [0; 2= —1]
and R C [0;2" —1]. We let E C [2le=1;2le — 1] denote the set of l.-bit primes. Finally, we require
that Ly, <leylyly <lo <1p/2—1.



2.8 The Strong Diffie-Hellman Setting

Definition 7 (Bilinear groups). Let G; =<g1>,G2 =<go> and Gp be groups of prime order
p. The function e : G1 x Gy — G is a bilinear pairing if it holds that 1) for all a € Gy, b € Ga,
and z,y € Z, we have e(a®”,b¥) = e(a,b)™ (bilinearity), 2) e(g1,92) # le, is a generator of Gr
(non-degeneracy), and 3) e is efficiently computable (efficiency). We call (G1, g1, G2, g2, Gr,p,€) a
bilinear group.

Definition 8 (SDH assumption (SDH) ). Let (G, g1, Ga, g2, G, p,e) be a bilinear group. We
say that the (¢gspu, tspm, €spr)-SDH assumption holds if for all tspy-time attackers A that are given
(z?) (z9sDH)

a (qspm + 3)-tuple of elements W = (gl,gf,gl s 0y ,gg,g%) € G?SDHH x G2 it holds that

Pr [(S’ C) — A(W)7 c e Zp, ENS Gla 6(5?9595) = 6(91792)] S €SDH,

where the probability is over the random choices of the generators g1 € G1, g2 € Go, v € Zy and the
random bits of A.

Definition 9 (SDH setting). Let I, = l,(k) be a polynomial. In the SDH setting, all computations
are performed in the cyclic groups of (G1,91,G2,g2,Gr,p,e) with |p|a = 1,. The PPT KeyGen(1*)

chooses x Ll Zp and outputs (SK = z, PK = g3). We assume that the (qspH,tspH,€spr)-SDH
assumption holds. Finally, we suppose that the values a,b,c € Gy are public random generators of
G1 such that log, b, log, ¢, and log, ¢ are unknown. combining functions z(r,m), we assume that
Z C Zyp and R C Zy.

3 Signature Classes

For convenience, we now introduce two general signature classes. The combining signature scheme
Scuvp constitutes an useful abstraction of the Camenisch-Lysyanskaya, the Fischlin, and the Zhu
signature scheme using combining functions. The chameleon signature scheme Scy can be regarded
as a general variant of the original Cramer-Shoup signature scheme where we do not specify a concrete
instantiation of the chameleon hash function.

3.1 SRSA Based Combining Signature Scheme (ScwvB,srsA)
In the SRSA setting, Sign(SK, m) randomly chooses 7 € R and e € E and computes a signature

o = (r,s,e) on message m with s = (uvrwz(“m))%. Let us now show, that our construction indeed
generalizes the claimed signature schemes. Observe that we can easily obtain the Fischlin scheme [9]
when we instantiate the combining function with EX 2 of Table [I| Furthermore, we can also get the
Camenisch-Lysyanskaya scheme [4] using EX 3. This becomes obvious if we substitute v by v' = vw as
w"w" = u(vw) w™ = u(v') w™. E| We note that when we use the Camenisch-Lysyanskaya scheme
with long messages we first have to apply a collision-resistant hash function to the message. What
we essentially get is Zhu’s scheme [22,23]. By Lemma |2 the resulting function is still combining.
The verification algorithm Verify(PK, m, o) takes a purported signature o = (r,s,e) and checks if

? . . .
5¢ = wv"w? ™ | if |e|y = I, and if e is odd.

3 To be precise, our generalization slightly differs from the Camenisch-Lysyanskaya scheme. In the original scheme, it
is required that [, = [,, + l,, + 160. As a result, the authors recommend for 160 bit long messages that [, = 1346,
ls = 1024, and l. = 162. In our scheme, we simply require that 1, <, <le < l,/2 — 1. Then, we can set [, = 320,
ls = 1024, and I = 321 for a probability €comb = 27160, Therefore, the signature size of our signature scheme is
much shorter (only (320 + 1024 + 321)/(1346 4 1024 4 162) ~ 66% of the original signature size) and the scheme is
more efficient (since shorter exponents imply faster exponentations) than the original scheme.



3.2 SDH Based Combining Signature Scheme (ScwmB,spH)

We also present a SDH based variant Scyp,spr of the combining signature scheme. We remark that
for the Camenisch-Lysyanskaya scheme there already exists a corresponding SDH based variant,
originally introduced in [5] and proven secure in [1,18]. Similar to Scmp,srsa, we obtain the SDH
based Camenisch-Lysyanskaya scheme when instantiating the combining function with EX 1. In
the same way, we can also get SDH based variants of the Fischlin signature scheme (using EX 2)
and of Zhu’s scheme (using Lemma [2). In the SDH based combining scheme, Sign(SK,m) at first
chooses a random 7 € R and a random t € Z, \ {—x}. It then computes the signature o = (r, s, 1)
with s = (abrc"(r’m))%ﬁ. Given a signature o = (r, s, t), Verify(PK,m, o) checks if e (s, PKg}) Z
e (abrcz(“m), gg).

3.3 SRSA Chameleon Hash Signature Scheme (ScH,srsa)

The signature scheme Scp srsa is defined in the SRSA setting. KeyGen(1*) additionally generates the
key material (S K¢y, PKcy) for a chameleon hash function. The value P K¢y is added to the scheme’s
public key. (S K¢y is not required. However, it may be useful when turning the signature scheme into
an online-offline signature scheme [20].) The signature generation algorithm Sign(SK, m) first chooses
arandom r € R and a random prime e € E. It then outputs the signature o = (7, s, €) on a message

1
m where s = (quh(r’m))e. To verify a purported signature o = (r,s,e) on m, Verify(PK, m, o)

checks if e is odd, if |e|2 = I, and if s¢ L pch(rm)

3.4 SDH Based Chameleon Hash Signature Scheme (Scu,spH)

Let us now define a new variant of the chameleon hash signature scheme that is based on the SDH
assumption. Again, KeyGen(1*) also adds the public key PK¢y of a chameleon hash function to
PK. In the SDH setting, Sign(SK,m) first chooses a random r € R and a random ¢ € Z, \ {—x}.
_1
Using SK = z, it then outputs the signature o on m as o = (r,s,t) where s = (abd’(“m)) =+t To

verify a given signature o = (r, s,t) on m, Verify(PK, m, o) checks if e (3, PKgg) Le (abCh(T’m),gg).
A suitable chameleon hash function can for example be found in [15].

Table 2. Comparison of signature generation and verification. We implicitly require that the verifier
checks that the signature components are in the correct ranges (except for e in the SRSA setting).

SRSA setting SDH setting
eﬁE,rﬁR,a:(r,s,e) tﬁZp\{—x},riR,a:(r,s,t)

T T

Chameleon|sign s = (uvd’(r’m)) e s = (abCh(T’m)) o+t
Hash verify| s° z w6 0dd?, le| = 1.7 e (s, PKg5) Ze (abCh(T’m),gg)

T T
; — r,,z(rm)\ e — r z(r,m)\ z+¢

Combining sign S - (uv w ) S - (ab c )
verify| s¢ = wo"w* "™ e odd?, |e| =17 e (s, PKgi) =e (ab”cz(’"’m),gg)

3.5 The Cramer-Shoup Signature Scheme (Scs srsa)

Let us now review the Cramer-Shoup signature scheme that is defined in the SRSA setting. The
Cramer-Shoup scheme Scs srsa additionally requires a collision-resistant hash function A : {0,1}* —
{0, 1}%. The message space is so extended to M = {0,1}*. We assume I, < I < l,,/2 — 1.



- KeyGen(1") additionally computes a random [.-bit prime é. The secret key is SK = (p,q) the
public key is PK = (n, €).
- Sign(SK,m) first chooses a random r € QR, and evaluates (the chameleon hash functiorfb

c = ré/vh(m) mod n. Then it draws a random [.-bit prime e # € and computes the value

s = (uvh(c))l/e mod n. The signature is o = (1, s, €).

- Verify(PK,m, o) re-computes ¢ = r°/v"™) mod n and checks if s Z (uvh(c))l/e mod n, if e is
odd, and if |e| = [.

Unfortunately, the proof of the more general chameleon hash scheme class does not formally
transfer to the Cramer-Shoup signature scheme because in the Cramer-Shoup scheme the key material
of its chameleon hash function is not chosen independently. In particular, the chameleon hash function
uses the same RSA modulus and the same value v. This requires slightly more care in the security
proof. We provide a full proof of the Cramer-Shoup signature scheme in Appendix

4 Security

Theorem 1. The Cramer-Shoup signature scheme, the combining signature class (in both the SRSA
and the SDH setting), and the chameleon signature class (in both the SRSA and the SDH setting) are
tightly secure against adaptive chosen message attacks. In particular, this implies that the Camenisch-
Lysyanskaya, the Fischlin, the Zhu, and the SDH based Camenisch-Lysyanskaya scheme are tightly
secure against strong existential forgeries under adaptive chosen message attacks.

We subsequently provide the intuition behind our security proofs. In Section [4.4] we present a
full proof of security for ScmB,srsa, which seems to us to be the technically most involved reduction.
The proof of Scmp,spu proceeds analogously and appears in Appendix We then informally show
how to transfer our technique to Scy. In Appendix [C.3 we provide a full proof of security of the
Cramer-Shoup signature scheme.

4.1 The SRSA Based Schemes

Let us first consider the SRSA based schemes, where B is given an SRSA challenge (4, n) with @ € Z.

Assume that attacker A issues ¢ signature queries my,...,my € M. As a response to each query m;

with i € [1;¢], A receives a corresponding signature o; = (14, 85, €;) € R X QR,, X E. Recall that the

existing security proofs for schemes of the combining class (e.g. [9]) consider two forgers that loosely

reduce from the SRSA assumption. This is the case when it holds for A’s forgery (m*, (r*,s*,e*))

that ged(e*, [1,e) # 1E| Given that |e*|s = [ this means that e* = e; for some j € [1;¢q].
*

Let us concentrate on the case that r* # r;. The proof of the remaining case (e* = e;j, ™ = r;
and m* # m;) is very similar. It additionally exploits the properties of the combining function.

The proofs in [4,8,9,22, 23] work as follows: the simulator B at first guesses j il {1,...,q}. By
construction, B can answer all signature queries but only if A outputs a forgery where e* = ¢; it can
extract a solution to the SRSA challenge. In all other cases (if e* = e; for some i € {1,...,¢}\ {j}),
B just aborts. Since the number of signature queries ¢ rises polynomially in the security parameter,
the probability for B to correctly guess j in advance is ¢! and thus not negligible. However, the
security reduction loses a factor of ¢ here. Our aim is to improve this reduction step. Ideally, we have
that any forgery which contains e* € {ey, ..., 4} helps the simulator to break the SRSA assumption.
As a result, the simulator can completely avoid guessing. The main task is to re-design the way B
computes A’s input parameters: for every i € {1,...,q}, we must have exactly one choice of r; such

4 For a formal proof that this function actually implements a chameleon hash function see Appendix
® The proof of the case ged(e*, [[%_, e;) = 1 is straight-forward.



that B can simulate the signing oracle without having to break the SRSA challenge. On the other
hand, if A outputs (m*, (r*,s*, e*)) with e* = e; for some i € [1;¢| and r* # r;, B must be able to
compute a solution to the SRSA challenge. Let us now go into more detail.

For simplicity, assume that B can setup A’s input parameters such that the verification of a
signature o = (r, s, e) always reduces to

s¢ = 0/ mod n. (1)

Suppose that neither @ nor f : R — N are ever revealed to A. We exploit that the r; are chosen
independently at random. So, they can be specified prior to the signature queries. Now, B’s strategy
to simulate the signing oracle is to define rq,...,r, such that for every i € [1;¢] it can compute a
prime e; € E with e;| f(r;). Without having to break the SRSA assumption, B can then compute s; =
@f(ri)/ei and output the i-th signature as (r;, s;, €;). Let us now turn our attention to the extraction
phase where B is given A’s forgery (m*, (r*, s*, €*)). By assumption we have e* = ¢; for some i € [1;q]
and r* # r;. B wants to have that ged(e*, f(r*)) = D < e* (or f(r*) # 0 mod e*) because then it
can find a solution to the SRSA challenge by computing a,b € Z \ {0} with af(r*)/D + be*/D =1
using extended Euclidean algorithm and outputting

(s*)aab — ,&D/e*’ 6*/D

B’s strategy to guarantee ged(e*, f(r*)) = D < e* is to ensure that e* = ¢; [f(r*). Unfortunately, B
cannot foresee r*. Therefore, the best solution is to design f such that e; [f(r*) for all r* # r;.

Obviously, B makes strong demands on f. We now present our construction of f and argue that
it perfectly fulfills all requirements. We define f as

:ZTiHGjTZ;HGj, (2)

i=1 j=1 -1 j=
J#i J#i
for r1,...,rq € R . Furthermore, ey, ...,e, € E must be distinct primes. First, observe that for every

k € [1;¢q| the function reduces to f(rg) = Z?:L#k(n —Tk) H?:L#i e; and thus f(ry) = 0 mod ey.
On the other hand, it holds for r # 7y that f(r) = (ry—7) H?:Lj;ék: ej mod ey. Since [, < I, we have
that |ry —r| < ey and as the e; are distinct primes, we finally get that ged((rp—r) H?:L#k ej,ex) =1
and thus f(r) # 0 mod ey for r # ri. For a more detailed treatment of f(r) see Appendix

4.2 The SDH Based Schemes

Under the SDH assumption, the situation is very similar. Here we also analyze three possible types
of forgeries (m*, (r*,s*,t*)): 1.) t* ¢ {t1,...,t4}, 2.) t* =t; with i € [1;¢| but r* # r;, and 3.) t* = t;,
r* =r; (but m* # m;) with ¢ € [1;¢]. Again, we concentrate on the second case. At the beginning,
B is given an SDH challenge (gl,gf,gf‘z), . ,gg”"q),g%gg). This time, B chooses PK = g5. In the
SDH setting, Equation transfers to

e(s, PKgh) = e(§]"™") go) & 57+ = /"), (3)

In contrast to the SRSA setting, f is now a polynomial with indeterminate x and maximal degree

q. Again, B must keep f(r,z) and the g}"”) secret from A. We define

q q g q

=> ri[Je+t) - ZHert]
=1 gj=1 =1 j=1
J#i J#i
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for r1,...,r4 € R and distinct ¢1,...,t; € Z,. Using the SDH challenge, B can easily compute g{(”)

since f(r, ) has maximal degree g. Observe that it always holds that (f(r,2) — (rx —7) [Tj—; ju(z+
t;))/(z +tx) € Z. If r = 11, we surely have that f(r,z)/(z + tx) € Z. If r # rj, then long division
gives us D € Z with D # 0 and a new polynomial f;, (7, 2) with coefficients in Z such that f(r,z) =
fi,(r,z)(x + tg) + D. Similar to the SRSA class, we can find a solution to the SDH challenge from

A’s forgery as

—f (r* 1/D A1/ (x+t* *
((s*)élft( ,)> :gi/( +t ),t.

For a more detailed treatment of the function f(r,z) see Appendix

4.3 Security of the Chameleon Hash Signature Class

The chameleon hash class is also tightly secure in the SRSA and the SDH setting. For convenience let
¢; = ch(r;,m;) for i € [1;¢] and ¢* = ch(r*,m*). Altogether there are again three types of forgeries
to consider: 1) e* ¢ {e1,... ez} (t* & {t1,...,t4}), 2) €* =e; (t* =1t;) but ¢* #¢; , and 3) e* = ¢;
(t* =t;), ¢ = ¢; but m* # m;. The proof of 1) is straight-forward and very similar to the proof of
Type I forgers of the combining class. The proof of 3) clearly reduces to the security properties of the
chameleon hash function. The proof of 2) requires our new technique to set up f(c) (f(c,x)) (similar
to the proof of the Cramer-Shoup signature scheme in Appendix . Recall Section [4] where we
analyzed the equations s¢ = @f(¢) and f(c) = 3%, ¢ H;?:L#i ej—cy i, H?:L#i e;j in the SRSA

setting (and s* = g{(c’x) and f(c,2) = 3L i [5o) ju(@ +t5) — e300 Ty jus(z + t5) in the
SDH setting). In the proof of the combining class the ¢; are random values (¢; = ;) that can be
specified prior to the simulation phase. In the proof of the chameleon hash class we take a similar
approach. Now the ¢; are the output values of a chameleon hash function. In the initialization
phase of the proof we choose ¢ random input pairs (m’;,7’;) € M x R, i € [1;¢] to compute the
¢; = CHEval(PK¢y, m}, 7). Then we prepare the function f(c) (f(c,z)) with C = {c1,..., ¢4} and
a set of ¢ random primes [.-bit primes (random values ti,...,t, € Z,) as in the proofs of the
combining class (a useful abstraction can be found in Lemma Lemma in Appendix A). Next, we
embed f(c) (f(c,x)) in the exponents of the two group elements u,v (a,b). In the simulation phase
we give the simulator SKey to map the attacker’s messages m; to the prepared ¢; by computing
ri = CHColl(SKe¢yw, 7, m}, m;). In this way we can successfully simulate the signing oracle. In the
extraction phase, the properties of the chameleon hash function guarantee that ¢* ¢ {ci,...,¢q}
(otherwise we can break the security of the chameleon hash function). This ensures that we can find
a solution to the SRSA challenge (SDH challenge).

4.4 Security Analysis of ScMmB,sRsA

Lemma 3. Assume we work in the SRSA setting such that the (tspsa,€srsa)-SRSA assumption
holds and V is a (tcomb, €comby Ocomp)-combining function. Then, the combining signature class as
presented in Section is (g, t, 6)-secumﬁ against adaptive chosen message attacks provided that

9 3q> B
q = qsrsA, €< 5 €SRSA + 3€comb + 390 comp + 18] +9.227/2 0t xtgpsa.

The proof of Lemma [3] is the first step in the proof of Theorem [I} It implies that the original
Camenisch-Lysyanskaya, the Fischlin and the Zhu’s signature scheme are tightly secure against
existential forgeries under adaptive chosen message attacks.

6 Using explicit bounds on the prime counting function [19], we can lower bound the number of primes in E for I, > 7
as |E| > (2% —1)/(In(2% — 1) +2) — (271 —1)/(In(2% " — 1) — 4).
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Proof. Assume that A is a forger that (g, t, €)-breaks the strong existential unforgeability of ScvmB srsA -
Then, we can construct a simulator B that, by interacting with A4, solves the SRSA problem in time
tsrsa with advantage esrsa. We consider three types of forgers that after ¢ queries mq,...,my
and corresponding responses (71, s1,€1),..., (¢, Sq,€q) partition the set of all possible forgeries
(m*, (r*,s*,e*)). In the proof, we treat all types of attackers differently. At the beginning, we let
B guess with probability at least % which forgery A outputs. Lemma (3| then follows by a standard
hybrid argument. We assume that B is given an SRSA challenge instance (@, n). Let Pr[S;] denote
the success probability of an attacker to successfully forge signatures in Game 1.

Type I Forger (e* ¢ {e1,...,eq})

Suppose B guesses that A is a Type I Forger.

Gameyg. This is the original attack game. By assumption, A (g, t, €)-breaks Scmp,srsa when inter-
acting with the signing oracle O(SK,-). We have that,

Pr[S,] =e. (4)

Game;. Now, B constructs the values u, v, w using the SRSA challenge instead of choosing them
randomly from QR,. First, B chooses ¢ random primes e, ..., ¢, & E and three random elements

to, o & Z(n—l)/zl and tg & Z3(n71)/4. In the following let € := [[}_, ek, & = szl,k;éi er and
€ij = szlyk#’k# er. The simulator computes v = 620¢, v = 2%°, w = 4*0° using the SRSA
challenge. Since the to,(,t; are not chosen uniformly at random from Z,, we must analyze the
success probability for A to detect our construction. Observe that (n—1)/4 =p'¢'+ (' +4')/2 > p'¢.
Without loss of generality let p’ > ¢/. Now, the probability of a randomly chosen x € Zn-1)/4 Ot

to be in Zy g is

Zygl W +d) 1 (g

$
P Z Tyl =1 — =
r[SU — (n—1)/4> xz ¢ Pq] ‘Z(n—l)/4’ (2}?,61/ +p/ + q/) q/ +1

With the same arguments we can show that ¢y is also distributed almost uniformly at random in
Zyq and Zsy . Since the e; are primes smaller than p’ and ¢’ it holds that e; fp’q’. Therefore, the
distribution of the generators is almost equal to the previous game and we get by a union bound
that

Pr[S,] > Pr[S,] — 327 (/272 (5)

Games. Now, B simulates O(SK,-) by answering A’s signature queries. Subsequently, set z; =

z(ej,mj) and z* = z(e*,m*). The simulator B sets PK = n and for all j € {1,...,¢} it chooses
L / 1" =

a random 7; € R and outputs o; = (rj,s;,¢;) with s; = (ww)% = ¢2to+ori+02)%  The

distribution of the so computed values is equal to the previous game and
Pr[S,] = Pr(S,] . (6)

Games. Now, consider A’s forgery (m*, (r*, s*,e*)). Define é = (to + t(r* +t;z*). For A’s forgery it
holds that (s*)¢" = 4%, We also have that ged(e*,2eé) = ged(e*, é) since by assumption we know
that ged(e*,2e) = 1. We will now analyze the probability for the event ged(e*,é) < e* to happen.
If ged(e*,é) = e* (or é = 0 mod e*) B simply aborts and restarts. Since |e*|o = I, it holds that
ged(e*,p'q’) < e*. Write ¢y € i —1y4 88 o = to,1 + p'q'to2 where too € [0;2] and to1 € [0,p'q — 1]
and observe that A’s view is independent from ¢ 2. Let T' = é — p'q’tp 2. We now argue that there
exists at most one 5072 € [0; 2] such that T—I—fo,gp’ ¢’ = 0 mod e*. This is crucial because if A produces
forgeries with T + %0 2p'q’ = 0 mod e* for all {p2 € [0;2] it always holds that ged(e*,é) = e* and B
cannot extract a solution the the SRSA challenge (using the techniques described below).

12



Assume there exists at least one such #p2. Then, we have that T + fp2p'¢’ = 0 mod e*. Let us
analyze the remaining possibilities foo &1 and t9o 2 as A = T + t92p'¢’ £ p'¢’ mod e* and B =
T +t02p'q £2p'q' mod e*. Since ged(e*,p'q’) < e* we know that p'q’ # 0 mod e*. As T +t92p'q' =0
mod e* we must have that A # 0 mod e*. Also, because e* is odd we know that 2p’q’ # 0 mod e*
and thus B # 0 mod e*. So, because there can only exist at most one #y 2 € [0; 2] with ged(e*, &) = e*
and since this 2?072 is hidden from A’s view, A’s probability to output it is at most 1/3. This means
that with probability at least 2/3, B has that ged(e*, é) = d < e*. From A’s forgery (m*, (r*, s*, e*)),
B can now find a solution to the SRSA challenge by computing a,b € Z with ged(e*/d,2eé/d) =
ae*/d + b2eé/d = 1 and

,ad/e* _ ﬁ“(s*)b,e*/d.
Finally, we have that
Pr(S;] > 2-Pr(S,]/3 (7)

and
Pr[S,] = €esrsa - (8)

Plugging in Equations 7, we get that € < %ESRSA +3.2270/2,

Type II Forger (e* =e; and r* # r;)
Now suppose B expects A to be a Type II Forger. We only present the differences to the previous
proof.

Game;. First, Brandomly chooses g distinct l.-bit primes eq, . .., e, and g random elements 71, ..., 7
R. Additionally, it chooses three random elements to, t(, t{, from Z(n_l) e Next, B computes u =

G2t 37, ’“iéi), v = q2(tee=i, éi)7 and w = 62%0¢ using the SRSA challenge. Again,

Pr[S,] > Pr[S,] — 3.2~ (n/272) (9)
Gamey. Now B simulates the signing oracle O(SK,-). On each signature query m; with j €
{1,...,¢}, B responds with o; = (rj,sj,e;) using the precomputed r; and e; and computing s;
as

1
Py

Sj — (U'Urjwzj) i — aQ((to+t67’j+t6’Zj)éj+23:1 Ti€3, 505 23:1 é@j) — az((t0+t6rj+tgzj)éj+Zg:1,i¢j(r’i_rj)é’ixj) )

Since we have chosen the e; to be distinct primes we have by a union bound that

2
Pr[S,] > Pr[S,] — L. . (10)
|E|
Gamegs. Now consider A’s forgery (m*, (r*,s* e*)). By assumption there is a i € {1,...,q} with
e =e; and r; # r*. Then we have that
((S*) ,ﬂ—2((to+tér*+t6'z*)éi—i-zgzm;éi(rj—r*)éi,j)>ei — 20ri—r)e;

Since |r; — r*| < e; and e; is an odd prime we have that ged(2(r; — 7*),e;) = 1 and as before we can
1

compute %% which is a solution to the SRSA challenge.
Pr[S,] = esrsa - (11)
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Summing up Equations @7, we get that e < espsa + ¢2/|E| + 3 - 227n/2,

Type IIT Forger (e* =¢; and r* =1;)
In case B expects A to be a Type III Forger, there are only minor differences as compared to the
previous proof.

Game;. First, B randomly chooses ¢ l.-bit primes eq,...,e, and ¢ random z1,...,z, € Z. Then,
B draws three random elements to, t(, ¢ from Z(n_l) Ja- Next, B computes u, v, and w as u =

o2(toe+32i ) ziéi)7 v = 42%¢ and w = g2(te—2i e)
Pr[S,] > Pr[S,] — 327 (n/272) (12)

Games. This game is equal to the previous game except that we require the e; to be all distinct.
We have that

2
Pr[S,] > Pr[S,] — %’ . (13)
Games. Now B simulates the signing oracle. For each query m; with j € {1,...,¢q}, B computes

rj =z Yzj,m;). If r; ¢ R, B aborts. Otherwise B outputs the signature o; = (r;,s;,¢e;) with s;
being computed as

1
P

sj = (’LL’UTj’lUZj) i = ﬂ?((t0+t6Tj+thj)éj+zg:1 2i€i =25 23:1 éi,j) — /Il2((t0+t6rj+t8zj)éj+23:1,i;éj(zi_zj)éiaj) )

The properties of the combining function guarantee that the r; are statistically close to uniform over
‘R such that,

Pr[Ss] > PT[S2] - q(scomb . (14)
Gamey. This game is like the previous one except that B aborts whenever there is a collision such
that z; = z(r;,m;) = z(r;,m*) = 2z* for some r;. Observe that we must have m* # m;, otherwise
A just replayed the i-the message/signature pair. For all t.omp-time attackers this happens with
probability at most €comp. Therefore,

Pr[S,] > Pr[S,] — €comb - (15)
Consider A’s forgery (m*, (r*,s*, e*)). By assumption, there is one index i € {1,...,q} with e* =¢;
and r* = r;. For this index it holds that

)= _ e; _
(6°) - 2o 82 o er=D80) ) gter=ss

1
Since we have excluded collisions, it follows that z; # z*. As |z; — 2*| < e;, B can compute 0% as a

solution to the SRSA challenge. Finally,
Pr[S,] = €esrsa - (16)

Summing up Equations 7, we get that € < esrsA + €comb + @Ocomb + ¢2/|E| + 3 - 227 1n/2,

5 Conclusion

In this paper, we have presented the first tight security proofs for a large class of signature schemes
which are secure under the SRSA and the SDH assumption in the standard model. Our results can
easily be extended to signature schemes for message blocks (as defined in [4,5]), where we can even
use distinct combining functions for each message block. An interesting open question is whether
there exists tight security proofs for the signature schemes without random oracles by Waters [21],
Hofheinz and Kiltz [12] and Hohenberger and Waters [13, 14].
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A Function Design

A.1 The SRSA Setting

Recall polynomial interpolation. Given two sets A = {a1,...,a,} € Nand B = {b1,...,b;} C N one
can easily design a polynomial f of maximal degree ¢ with the following property: for every i € [1;q]
it holds that

c=a; = f(c) =0;.

In the following we want to modify the properties of this function according to the requirements of
our security reduction in Section [4| First, f should be linear such that it can efficiently be embedded
in the exponents of only two group elements. Second, for f to be useful in the simulation phase
and the extraction phase of the security reduction we need equivalence instead of implication. Of
course, we can only buy these additional properties by relaxing others: if we consider the definition
of the SRSA assumption (and Equation [1)), it is perfectly sufficient to just require b;| f(c) instead of
f(c) = b;. In the simulation phase this immediately transfers to the situation where the simulator
has to pretend that it can compute solutions to the SRSA problem. On the other hand, if ¢ # a;
we get (by the required equivalence) that also b; [f(c) what directly gives rise to a solution to the
SRSA problem.

Lemma 4. Suppose we are given a set of ¢ primes P = {e1,...,eq} with ole=l < g < 2l — 1 for
i € [1;q] and q integers ci,...,cq € [0;2%71 — 1] (|cila < L for all i € [1;q]). Then we can construct
an efficient linear function f :[0;2%~1 — 1] — Z such that

ex|flc) & c=c
for all k € [1;q].

Proof. Let

First assume ¢ = ¢i. Then f(c) reduces to

q
f(ck):Z(ci—ck He] —echl H ej = 0 mod ey.
; =1

=1
ik Tz 2k f

Now assume ¢ # c¢;. Then we have

f(c):Z _CH€J Zi—c)Hej (ck —c) Hej—ekz H (e —c¢) Hej

i=1 i=1 j=1 j=1
J#% i#k i J#k 7k J#ik J#k
q
=(ck—0) H ej mod ey.
j=1
Ik

Since the e; are distinct primes and as |c; — ¢| < e it holds that (¢ — ¢) HJ 1j2k € 7 0mod ey
what proves Lemmal 4] If we assume that |c;|2 < lo + 1 for all i € [1;¢] we can also have c1,...,¢q €
[—2le;2le —1].
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A.2 The SDH Setting

Lemma 5. Given a set T = {t,...,t,} C Zy, and q values ci,...,cq € Ly, we can easily build a
linear (in c¢) function f(c,x) with f : Zy x Zplx] — Zy[x] that maps polynomials of mazimal degree
q in indeterminate x to polynomials of mazximal degree q such that

(x 4+ tg)|f(c,x) & c=cy
for all k € [1;q].

Proof. Let

q q q q
=D all@+t) e [+
=1 j=1 i=1 j=1
i ji

First assume ¢ = ¢,. Then f(c,z) reduces to

q q q q

flepa) =S (i = [[@+t) = @+t (e H T +t))
i=1 j=1 i=1 j=1
i#k j#4 i#k 7&

Now assume ¢ # c¢;. Then we have

q q
fle,x) = Z(Cl —0) H(SU +t5)
=1 j=1
J#i
q q d
=> @=L +t)+ - IJw+t)
i=1 Jj=1 i=1
i7k i Jk
q q a
x—l—tkz ) H x+tj)+(ck_c)H(x+tﬁ)

Since the t; are distinct it holds that (x + t) f(ck — ¢) H?Zl (T + t;) what proves Lemma

B Overview of SRSA and SDH based Signature Schemes
C Omitted Proofs

C.1 Proof of Lemma [2

Proof. Assume V is (tcomb, €combs Ocomb )-combining and H is (tp, €5 )-collision-resistant. Let z & Vi
and & Hy,,. Set M’ = {0,1}* and 2/(r,m) = z(r, h(m)). First observe that given m € M’ and
t € Z,, we can always compute r € R (or L) just by finding an appropriate r for h(m), z(r, h(m))
using the properties of z.

Now, for contradiction assume that an attacker A can find collisions for 2’ in time min{tcomp, tx}
with probability better than €, + €comp- Let (m, m’) be such a collision. Then, we have either found a
collision (m, m') of the hash function (if h(m) = h(m’)) or a collision (h(m), h(m')) in the combining
function (h(m) # h(m’)). In the first case, A has computed a hash collision in time equal or less tj
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Signature Scheme Security Security Loss Prime

Assumption |Original  |Our Generation|
Reduction |Reduction

Gennaro-Halevi-Rabin [10] SRSA O(1) INJ

Cramer-Shoup [8] SRSA O(q) O(1)

Naccache-Pointcheval-Stern [17] [SRSA O(1) INJ

Fischlin [9] SRSA O(q) O(1)

Zhu [23] SRSA O(q) O(1)

Camenisch-Lysyanskaya [4] SRSA O(q) O(1)

Chevallier-Mames-Joye [6] SRSA O(1)

Hofheinz-Kiltz [12] SRSA O(q)

Boneh-Boyen [3] SDH O(1)

Camenisch-Lysyanskaya [1,5,18] |[SDH O(q) O(1)

Hotheinz-Kiltz [12] SDH O(q)

Table 3. Tightness of SRSA and SDH based signature schemes. INJ indicate that the signature
scheme requires an injective mapping of messages to primes. As a consequence the verifier must
perform O(|m|2) primality test to find a prime.

with a probability greater than €y, + €comp > €p,. This contradicts the fact that H is (5, €5 )-collision-
resistant. On the other hand, if 4 has found a collision in the combining function, this means that
A can break the collision-resistance of V in time less or equal than t.omp, with probability greater
than €, + €comb > €comb- Lhis contradicts the fact that V is (fcombs €comb, Ocomb )-combining.

To proof the probability bound dcomp, observe that since h(M') C M we finally have

max {1/2 . Z |Pr[r’ =] — Pr[z=!(t,h(m)) = TH}

meM’ reR
< nr?e% {1/2 . TEZR }Pr[r’ =r|— Pr[z_l(t, m) = 7“”}

< 5c0mb .

C.2 Security Analysis of ScvmB,spH

Lemma 6. Assume we work in the SDH setting such that the (tspm, espr)-SDH assumption holds
and V is a (tcomb, €comb, Ocomp) -combining function. Then, the combining signature class as presented
m Section is (q,t, €)-secure against adaptive chosen message attacks provided that

2
q
q = qspH, € < 3€spH + 3€comb + 3q660mb + 7, t = tspH.

In particular, this means that the SDH based Camenisch-Lysyanskaya scheme is tightly secure against
existential forgeries under adaptive chosen message attacks.

Proof. The proof of Lemma [6] is the second step in the proof of Theorem [Il We consider three types

of forgers that after ¢ queries my, ..., my and corresponding responses (r1, s1,%1), ..., (rq, Sq, tq) par-

2
tition the set of all possible forgeries (m*, (r*, s*,t*)). (gl, gf,g%x ), . ,ggxq),gg, g%)
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Type I Forger (t* ¢ {t1,...,t,})
Suppose B guesses that A is a Type I Forger.

Gameg. This is the original attack game. By assumption, A (g, t, €)-breaks Scmp,spa when inter-
acting with the signing oracle O(SK,-). We have that,

Pr[S,] =e. (17)

Game;. Now, B constructs the values a,b,d using the SDH challenge instead of choosing them

randomly. First, B chooses ¢ random values t1, . . . , %, & Z,, and three random elements to, t(,, t{) S L.
In the following let ¢ := Zfl(tk +x), t; = HZ=1,k7éi (ty + ) and t; ; := HZ:l,k;«éi,k;«éj (tx + ). The
simulator computes a = g'iot, b= giot, c= giot

Since the tg, t(), tj are chosen uniformly at random from Z, we have

Pr[S,] = Pr[S,] . (18)
Games. Now, B simulates O(SK, -) by answering A’s signature queries. As before, let z; = z(r;, m;)
and z* = z(r*,m*). The simulator B sets PK = g5 and for all j € {1,...,q} it chooses a random
: o (r s ) wi (T L (@) (fottori gzt
rj € R and outputs o; = (5, sj,t;) with s; = (w1 w?) i =q .
Pr[S,] = Pr[S,] . (19)

Gamegs. Now, consider A’s forgery (m*, (r*,s*,t*)). We have that t* ¢ {t1,...,t,} and
e(s*, PKgh) = e(abr*dz(r*’m*)ﬂz)

which is equivalent to

A VAC S
s — (abr dz(r ,m ))
_ t(toFtgrrHtz(r,m*)) /(z+t*)
=0 .

B can now find a solution to the SDH challenge by computing D € Z, with D # 0 and a polynomial
f'(z) € Zp|z] of degree ¢ — 1 such that t = f'(z)(x +t*) + D. We get that

* !k " * * __f! 1/D
gi/(t +x) _ ((S*)l/(to+tor +t2(r*m ))g1 f (m)) / .

Finally, we have that
Pr[S,] = Pr[S,] = espm - (20)

Plugging in Equations 7, we get that € = egpy.
Type II Forger (t*=t; and r* #r;)

Now suppose B expects A to be a Type II Forger. We only present the differences to the previous
proof.

Game;. First, B randomly chooses g distinct elements t1,...,t, € Z, and ¢ random elements

T1,...,7q¢ € R. Additionally, it chooses three random elements to, ¢, t{, € Z,. Next, B computes
tot+>" 1 . rit; tht—S"9 ¢, "y .

a= 91( oY i ), b= 91( of 2 i ), and d = giot Again,

Pr[S,] = Pr[S,] . (21)
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Game;. Now B simulates the signing oracle O(SK,-). On each signature query m; with j €
{1,...,q}, B responds with o; = (rj,s;,t;) using the precomputed r; and t; and computing s;
as

6 — (abrjdzj)l/(ertj) _ g(t0+t’ora‘+t6’2j)fj+23:1,i¢j(m*m‘)t},j
j = =0 .

Pr[S,] > Pr[S,] — q2/p . (22)

Gamegs. Now consider A’s forgery (m*, (r*,s*,t*)). By assumption there is a k£ € {1,...,q} with
t* =t and ri # r*. Then we have that

* * 1/($+t*) /,r* IIZ* ¥ : re—p* T. 1/($+t*)
s* = <ab"' d? ) — <g§t0+t0 g2 )0 (s )t1)>

_ _ _ 1 t
_ <g(t0+t6r*+t{),74*)H‘Zg—l,i;ék(Ti_T*)ti""(Tk_T*)tk)> /(@)
- 1

(23)

Again we can compute D # 0 and f’(z) with t; = f'(z)(z + tx) + D using long division. Therefore,

o —((ottor*+t5 2" e+ 327 g (ri—r )ikt (re—r*) f' () 1/D(re=r") 1/(z+tx)
59 =90

constitutes a solution to the SDH challenge.

Pr[S,] = Pr[S,] = espn - (25)
Summing up Equations 7, we get that € < espn + ¢2/p.

Type III Forger (t* =t; and r* =r;)
In case B expects A to be a Type III Forger, there are only minor differences as compared to the
previous proof.

Game;. First, B randomly chooses g values t1, ..., ¢, € Z, and g random values 21, ..., 2, € Z. Then,

t- q v_v
B draws three random elements ¢, t(,, ¢ from Z,. Next, B computes a, b, and ¢ as a = giOHZi:l zm’
ot n_yNa

b = g§0t7 and C = giot Zl:l tz'
e (26)

Games. This game is equal to the previous game except that we require the t; to be all distinct.
We have that

2
Pr[S,] > Pr[S,] — L . (27)
p
Games. Now B simulates the signing oracle. For each queries m; with j € {1,...,q}, B computes

r; = z7Yzj,m;). If r; ¢ R, B aborts. Otherwise B outputs the signature o; = (r;,s;,t;) with s;
being computed as

s; = (abrids )l @+t) = g(t0+t6’“j+t8Zj)fj+Z§’:1,i¢j(Zi*Zj)fi,j
i = =9 :

Therefore,
PI“[SS] > PT[SQ] - q5comb . (28)
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Gamey. Consider A’s forgery (m*, (r*,s*,t*)). By assumption, there is one index k € {1,...,q}
with t* = t; and r* = 7. This game is like the previous one except that B aborts whenever there
occurs a collision m* # my, such that zp = z(rg, mg) = z(rg, m*) = z*. For all teomp-time attackers
this happens with probability at most €comp. Therefore,

Pr[S,] > Pr[S,] — €comb - (29)

It now holds that

* *\T. *\ T -+t _
<S*g—((to+t6"“ o 2 Vet g k(252 )tk,j)>( k) - g(zk—z*)tk
=0 .

Compute D # 0 and f'(x) with tx = f/'(x)(z + tx) + D as before. We now have that

<S*g_((to+t67‘*+t6’z*){k‘f‘zg—l,j#k(Zj—Z*)fk,j+(2k—2*)f/(93))) 1/D(Zkiz*) o gl/(w-i—tk)
— J1

is a solution to the SDH challenge. Finally,

Pr[S,] = espn - (30)

Summing up Equations 7, we get that € < espH + €comb + ¢comb + ¢2/P-

C.3 Security Analysis of the Cramer-Shoup Signature Scheme

The original proof in [8] considers three types of forgers that after ¢ queries mq,..., my and corre-
sponding responses (71, 51, €1), . . ., (g, S¢, €) partition the set of all possible forgeries (m*, (r*, s*, €¥)).
For the following two forgers the original proof already tightly reduces to the SRSA assumption.

For a Type I Forger it holds that e* ¢ {e1,...,e,}. The proof is very similar to the proof of
Type I Forgers in the combining class.

A Type II Forger outputs a forgery such that e* = e; for some j € [1;¢]. It holds that
¢ = (r*)e"m) = (r;)%"M™) = ¢; mod n. This proof reduces security from the implicit chameleon
hash function and the hash function. (¢* = ¢; with m* # m; constitutes a collision in the chameleon
hash function or a hash collision.)

The only loose reduction is the proof of Type III Forgers.

A Type III Forger outputs a forgery with e* = e; for some j € [1;¢]. It holds that ¢* =
(r*)Ehm) o (r;)0h(m5) = ¢; mod n. We will now present a new reduction for Type III Forgers
that makes use of the technique described in Section (4.1

We assume that B is given an SRSA challenge instance (4, n). Intuitively, we must only give
a new proof for the case that the adversary outputs a forgery with e* = e; for some j € [1;¢]
and c* = (r*)%"m) £ (r;)¢"™) = ¢; mod n. Recall (1)) and . In our new proof the r; now
correspond to the output values of the implicit chameleon hash function ch(r,m) = réo™™) mod n.
(For more information on this chameleon hash functions see Appendices and . Nevertheless
these output values, as well as the e;, can also be specified already in the initialization phase. This
is because the simulator B is given the secret key of the chameleon hash function what enables him
to map the adversary’s messages to the prespecified values. Since f(r) is linear, B can efficiently be
embedded in the exponents of u,v. By assumption the adversary outputs a forgery that maps to a
new output value of the chameleon hash function (c* = (r*)%™M™") £ (r;)%0"(™) = ¢; mod n). As
before we can use it to extract a solution to the SRSA assumption. We provide a formal proof in

Appendix
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Lemma 7. Assume the (tspsa,esrsa)-SRSA assumption holds. Moreover let h : {0,1}* — {0, 1}
be a (tp, = tsrsa,€n)-collision-resistant hash function. Then, the Cramer-Shoup signature scheme is
(g, t,€)-secure against Type 111 forgers provided that

I 4 93-1n/2

B , = 13RSA-

q = qSRSA; € < €SRSA + €+

The proof of Lemma [7] concludes the proof of Theorem [T}
Proof.

Gameyg. This is the original attack game. By assumption, A (g, t, €)-breaks Scmp,srsa when inter-
acting with the signing oracle O(SK,-). We have that,

Pr[S,] =e. (31)

Game;. Now, B constructs the values u,v using the SRSA challenge instead of choosing them

randomly from QR,,. First, B chooses ¢ random primes ey, ..., ¢, S E and two random elements
$ A _ _

to, th < Z(, 1y Let again € := ITi ex, & = szl,k# er and €, = ,Z:Lk#,k# er. Then B

chooses ¢ random values ¢/, . .. ,cfl S QR,,. Next it chooses € S E such that € ¢ {e1,...,e,}. For all

i € [1;¢q] it then computes ¢; = (¢;)¢ mod n. The values u, v are computed as v = —26(toe+371 €) and
u = 62e(tet i h(e)@) | For convenience let v/ = 420842121 €) and observe that (v/)¢ = v mod n.
The distribution of the generators is almost equal to the previous game and we get by a union bound
that

Pr[S,] > Pr[S,] — 227 (n/272) (32)

Games. In this game the simulator aborts if there is a collision among the randomly chosen e;. We

have that 5

Pr[S,] > Pr[S,] — L. . (33)
E|
Gameg. Now, B simulates O(SK, -) by answering A’s signature queries. For all j € {1,...,¢} it first
computes 7; € QR as rj = c}(v’)h(mﬂ') mod n. Observe that by construction rf/vh(mﬂ') = ¢; mod n.
Next B outputs o; = (7}, 55, €;). The distribution of the so computed values is equal to the previous
game and

Pr[S,] = Pr[S,] . (34)

Gamey. Now, consider A’s forgery (m*, (r*, s*, e*)). By assumption we have e* = e; but ¢* # ¢; for
some j € [1;¢]. In this game the simulator aborts if ¢* and ¢; make the hash function collide. We get
that

Pr[S,] > Pr[S,] — e . (35)

Otherwise B can compute a solution to the SRSA assumption. For A’s forgery o* = (r*, s*,e*) it
now holds that e* = e; but h(c*) # h(c;). We have that

(s*)" = w™) mod n
4 28((to—toh(m*))e+320, (h(c)—h(c™))ei 10d n

which is equivalent to

(<s*)ﬂ*2é((t0*tf)h(m*))éjﬁ’zgzlyi;ﬁj(h(Ci)*h(C*))él‘,j)ej _ ﬁ?é(h(cj-)—h(c*))éj mod n.
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Similar to before we use that |h(c;) —h(c*)| < e; to show that ged(ej, 2é(h(c;) —h(c*))e;)) = 1. So B
can find a,b € Z with ae; + b2é(h(c;) — h(c*))€;) = 1 and generate a solution to the SRSA challenge
by computing

ﬁl/ej — o <(8*)a72é(t07t6h(m*))é]'Jng:lyi#j(h(ci)fh(c*))éi,j>b )

We finally have
Pr[S,] = €srsa.-

C.4 A Note on Strong Existential Unforgeability

All presented SDH based signatures fulfill our strong notion of security. This is because in the proof
we must have m* # m; only if t* = t; and r* = r;. Now, assume we additionally let m* = m,.
Then, we must also have that s* = s;. Consequently, A did not output a valid forgery because
(m*,0%) € {(m1,01),...,(mg,04)}. It rather re-sent one of the previous queries together with the
corresponding response obtained from the signing oracle.

For the SRSA based signatures, the situation is similar. Let us consider forgeries (m*, (r*, s*, €*))
where we have for one i € [1; ¢ that e* = e; and r* = r;. This is the only case where we must require
that m* # m; to successfully complete the reduction. Now we can argue like before since m* = m;
of course implies s* = s;.

C.5 Implicit Chameleon Hash Function in the Cramer-Shoup Signature Scheme

Lemma 8. In the SRSA setting, let h : {0,1}* — {0,1}¢ be a (3, €p)-collision-resistant hash
function and € € E be a prime with l. < l. < 1,/2 — 1. Set PKcy = (e,n,v = v'* mod n) and
SKey = v for some random v' € QR,,. Then, ch(r,m) = h (v_h(m)ré mod n), ch=(r,m,m’) =
r- (U’)(h(m/)_h(m)) mod n, and the algorithms to setup SKcy and PKey constitute a chameleon hash
function with M = {0,1}*, R = QR,,, and C = {0,1}c that is (min{ts,tspsa},3/2¢n + 3esrsa)
collision-resistant.

Proof. First, given SK¢y, r € R, and m,m' € M, we can easily find v’ € R such that ch(r,m) =
ch(r',m’) by computing ' = r - (¢v/)Mm)=Am) ymod p.

Second, observe that if 7 is chosen uniformly at random from QR,, v~"™r€ mod n is also
distributed uniformly at random for all m € M. Therefore, h(v="(™)1€ mod n) is equally distributed
for every m € M.

Third, for contradiction assume a min{¢y, tsgrsa }-time attacker A that can find (m,r), (m/,r’)
with m # m/ such that h (v_h(m)ré mod n) =h (U_h(m/)(’l“, )¢ mod n) with probability better than
3/2¢p, + 3esrsa- Then, we can construct an algorithm B that breaks the SRSA assumption or the
security of the hash function. B at first guesses with probability > 1/3 if A outputs a collision
such that 1.) h(m) = h(m/), 2.) v="™7€ mod n # v="™)(+)¢ mod n and h(m) # h(m’) or 3.)
oMM mod n = oMM ()€ mod n and h(m) # h(m’). In the first two cases, B can output a
collision for the hash function with probability better than €. In the last case, B can break an RSA
challenge (4 mod 7,7, ) with probability better than esgsa: B just inputs (v := u,é = é,n = i) into
A. Since for the output of A it holds that v?)="m) — (3 /r")¢ mod n and because |h(m')—h(m)| < é
and € is prime, B can compute a, b € Z such that ged((h(m’) —h(m)),€) = a(h(m’)—h(m))+bé = 1.
It can thus find a solution to the RSA challenge as (r/r')%® mod n. All cases contradict our starting
assumptions which implies that A cannot exists, what finally proves Lemma

—h(
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